Engineering of musculoskeletal system and rehabilitation

Prof. Dominique Pioletti
Laboratory of Biomechanical Orthopedics
EPFL

Musculoskeletal conditions

<u>WHO</u> (February 2021):

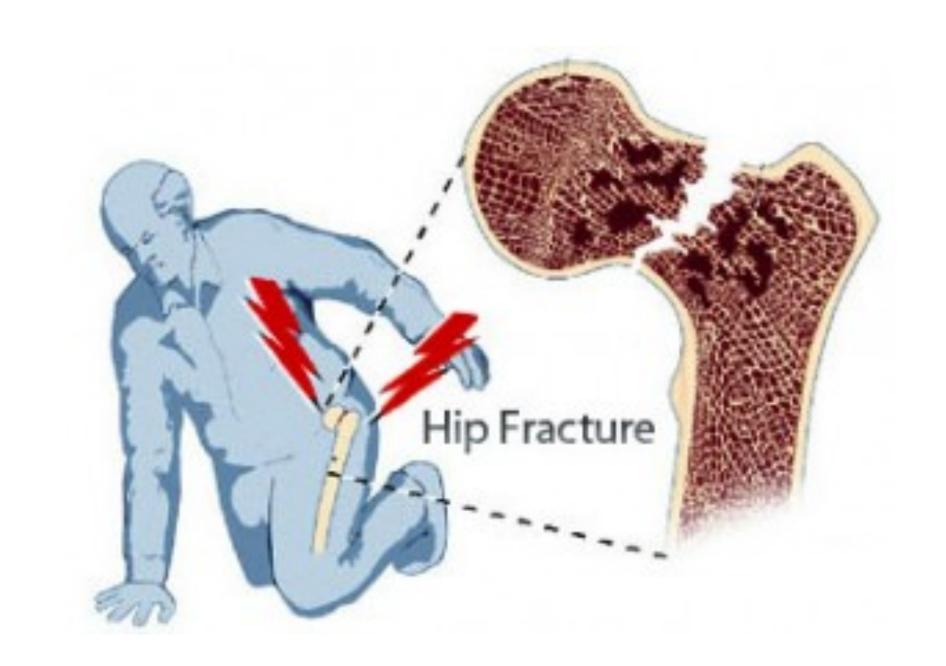
- Approximately 1.71 billion people have musculoskeletal conditions worldwide.
- Musculoskeletal conditions are the leading contributor to disability worldwide

Musculoskeletal conditions include:

- Osteoarthritis
- Osteoporosis, osteopenia and associated fragility fractures, traumatic fractures of soft and hard tissues

Blbagechenical aspectantion and antions

250'000 ACL injuries occur in the USA annually.

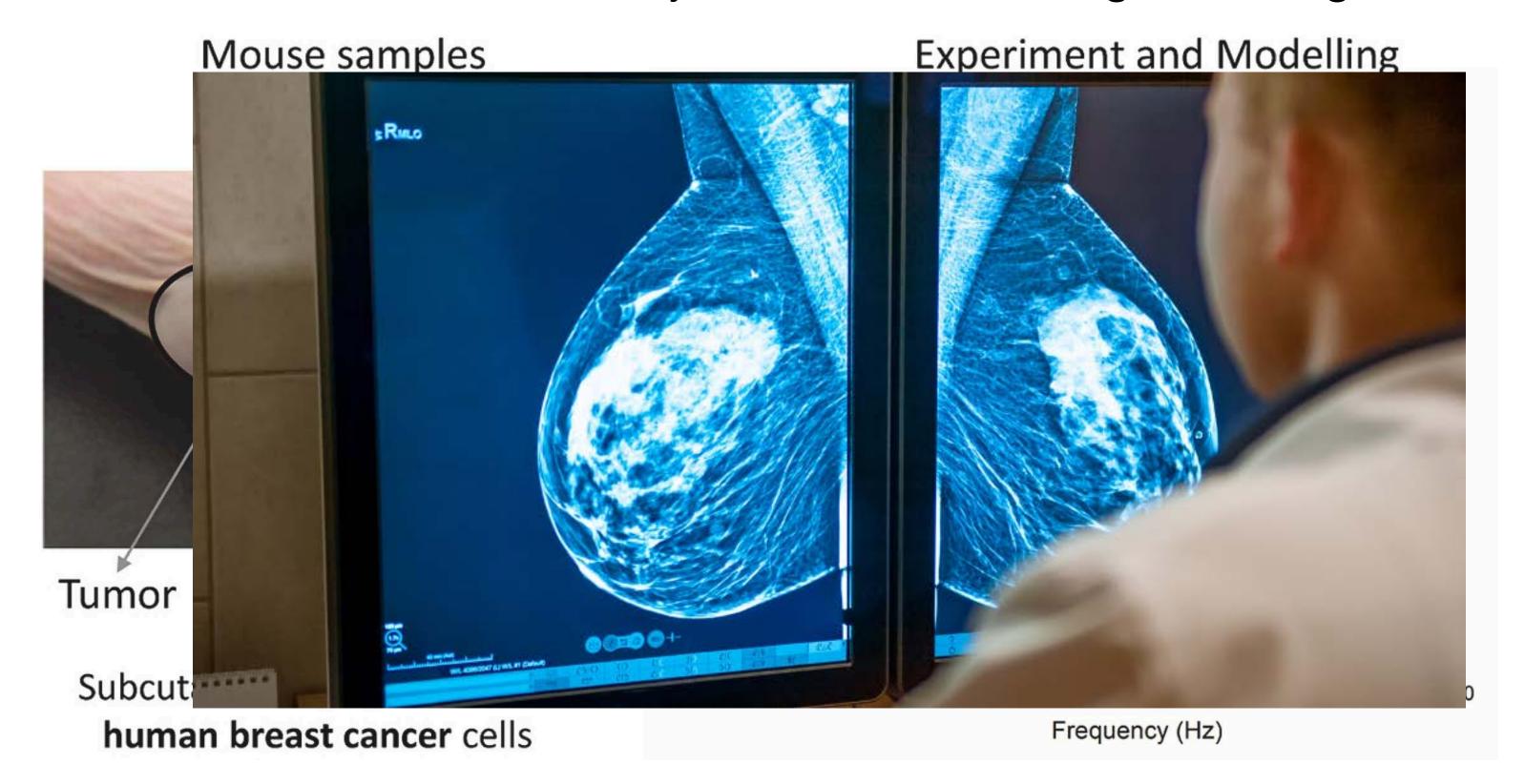


Mortality rate is 20% within 1 year.

How can mechanical aspects be considered in medicine?

1) Diagnostic

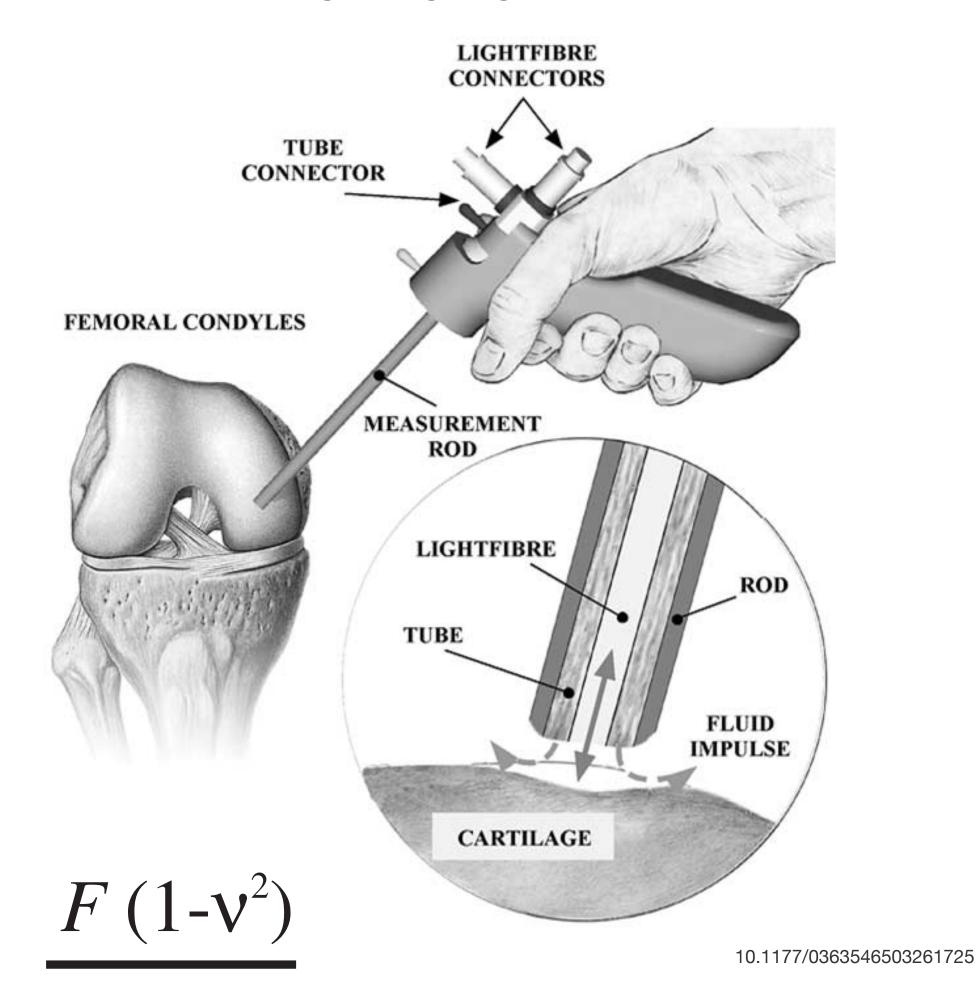
Thestography disters watempropospation by exatinate the of eating hip hopetican at the branch sissues.

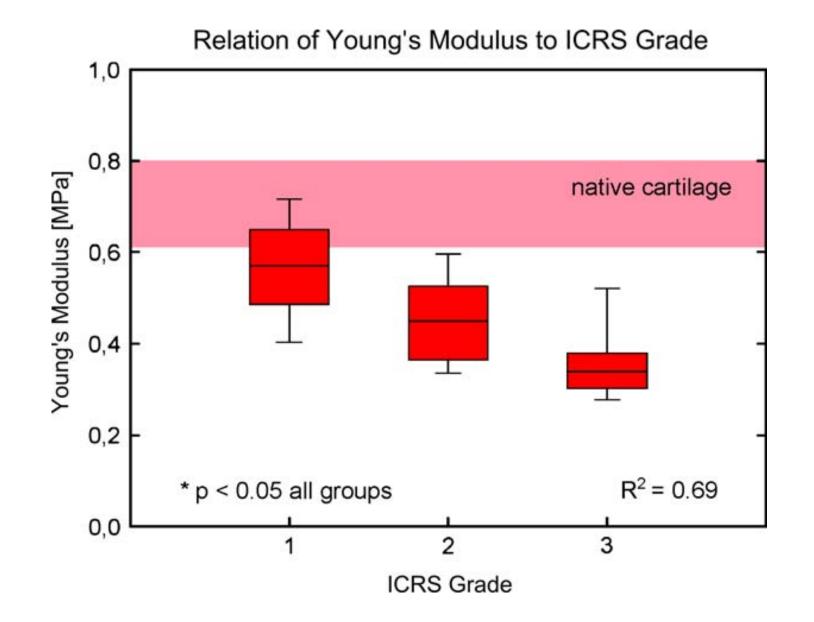


How can mechanical aspects be considered in medicine?

1) Diagnostic

The cartilage aging process weakens its mechanical properties





ICRS grading based on the Outerbridge score⁶

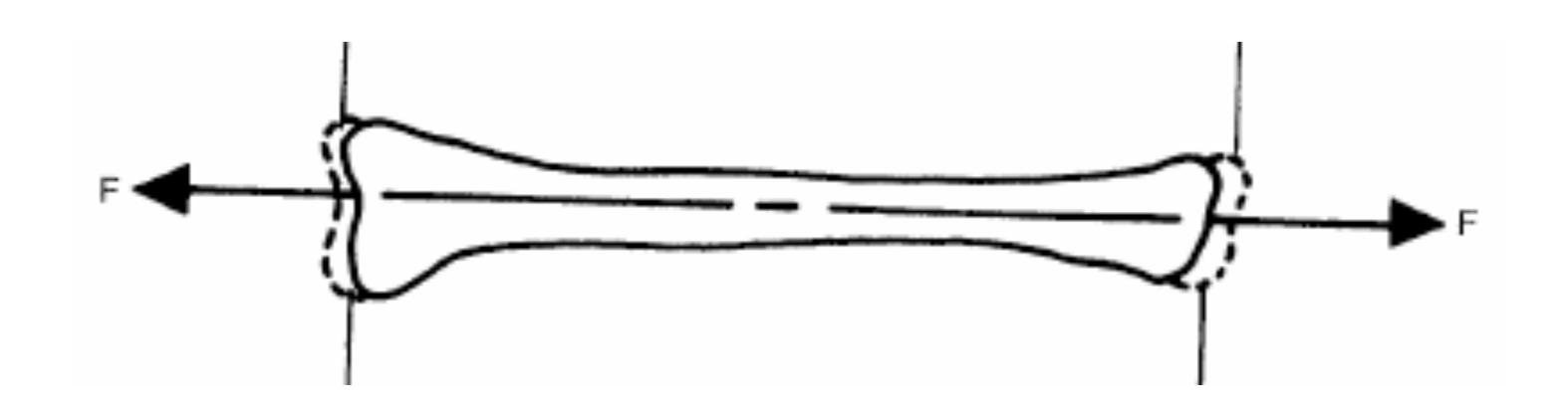
Grade	Property				
1	Superficial lesions, fissures and cracks, soft indentation				
2	Fraying, lesions extending down to $<$ 50% of cartilage depth				
3	Partial loss of cartilage thickness, cartilage defects extending down >50% of cartilage depth as well as down to calcified layer				
4	Complete loss of cartilage thickness, bone only				

How can mechanical aspects be considered in medicine?

2) Therapeutics

- prevention of fracture (car accident, sport traumatology, ...)
- implant design (orthopedic, cardiac valves, ...)
- tissue differentiation
- physical medicine
- prevention of disease (osteoporosis)
- drug delivery
- muscle biomechanics
- brain model (damage)
- tissue engineering
 - stiffness of matrice affects cell behavior
 - functional tissue engineering + permeability

Biological tissues are stressed and deformed when a force or moment is applied



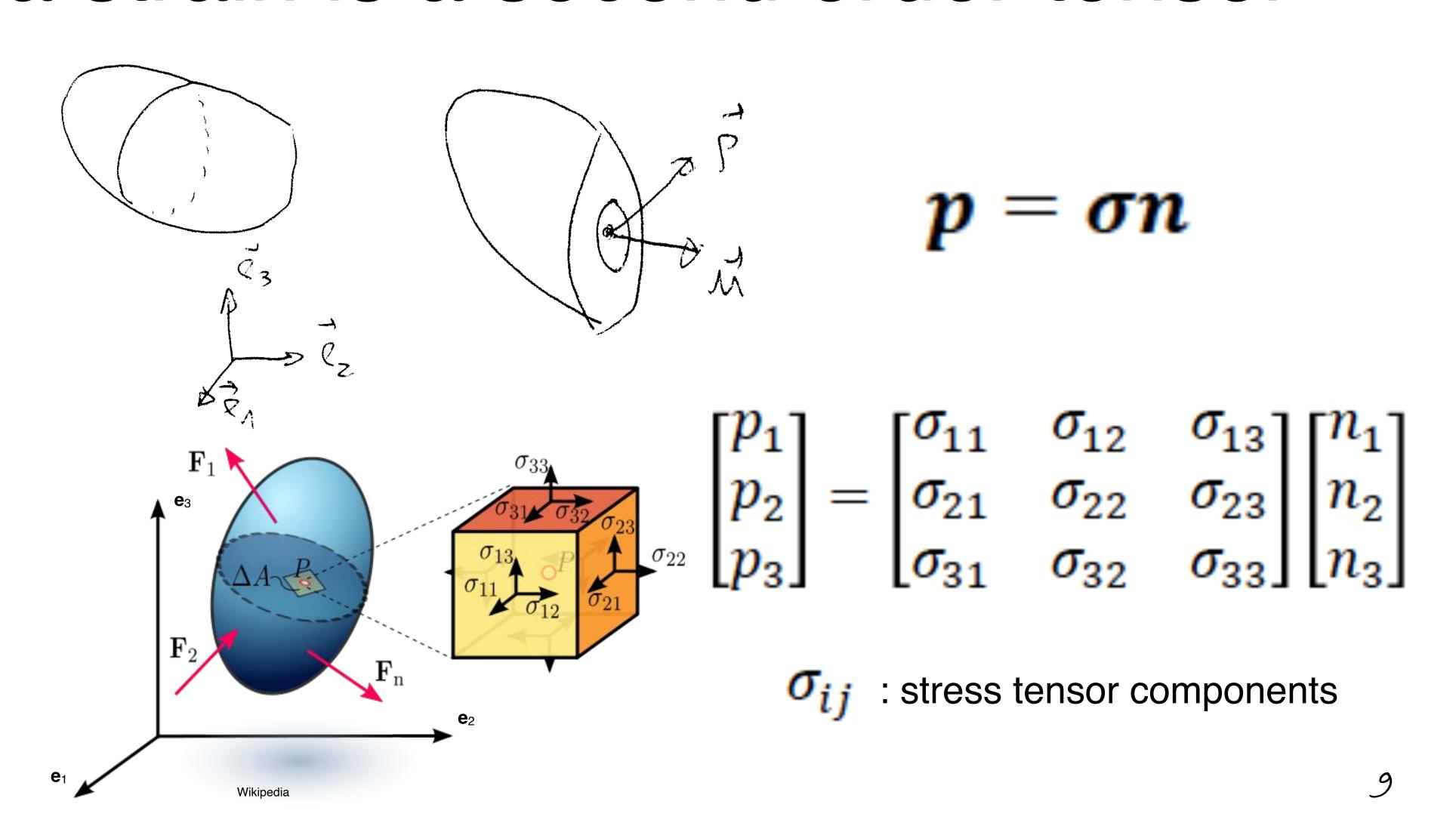
Newton equations of motion $m\vec{a}=\sum \vec{F}^{ext}$ $I\dot{\omega}=\sum \vec{M}_{o}^{ext}$

Continuum mechanics concepts should be considered

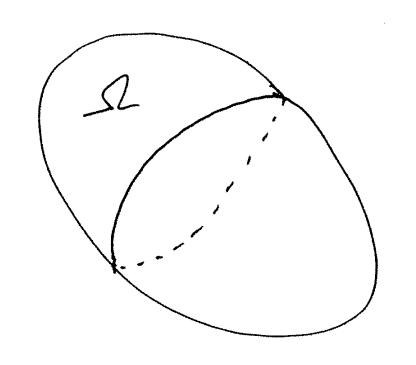
Basic concepts of continuum mechanics

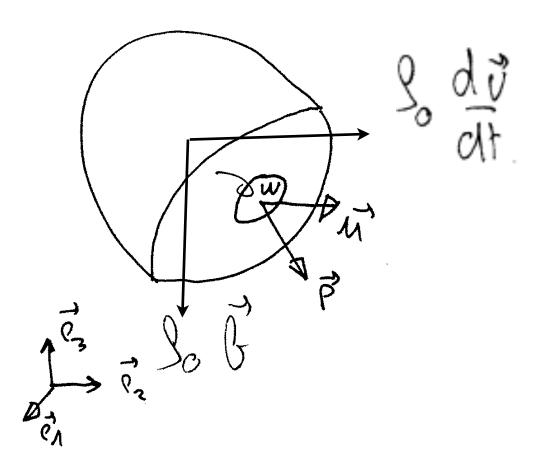
- Conservation laws
 - linear momentum
 - angular momentum
 - mass
 - energy
 - entropy inequality

The mathematical "nature" of a stress and a strain is a second order tensor



Conservation of the linear momentum





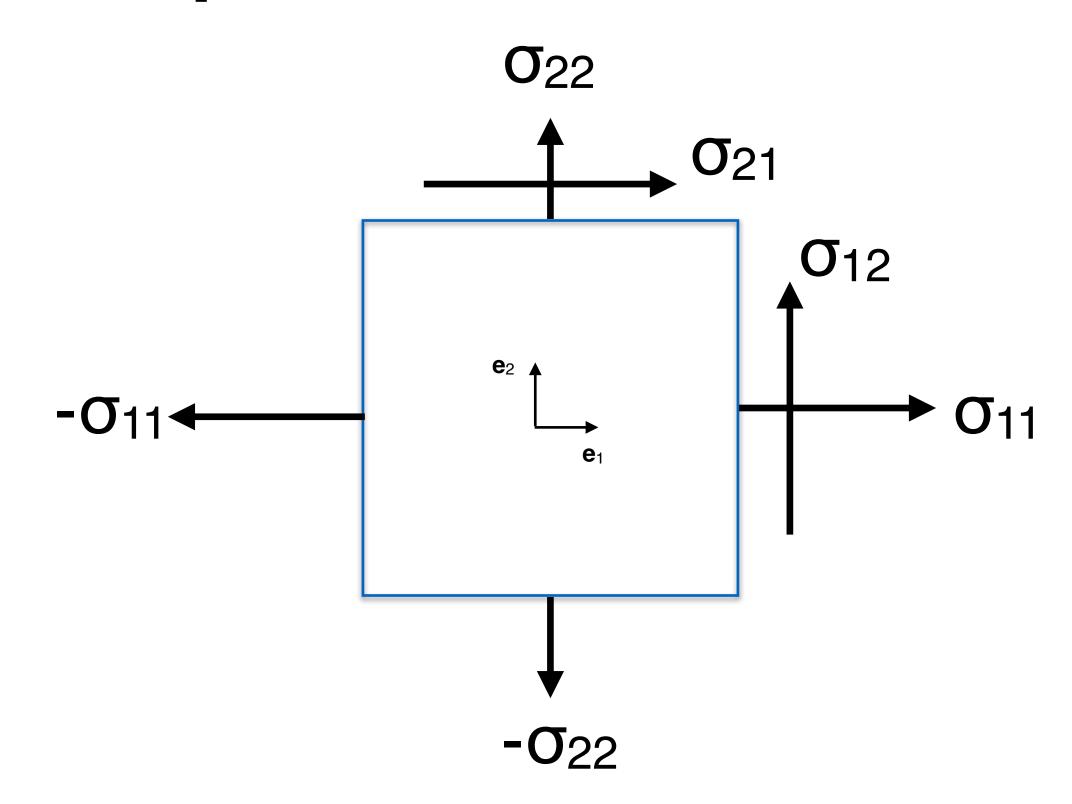
Conservation of the linear momentum (surface to volume integration)

Divergence theorem:
$$SoundA = SounodV$$

Conservation of the linear momentum (localisation)

$$\frac{2}{3}\frac{d\vec{v}}{dt} = \frac{1}{3}\frac{1}{3}\frac{1}{3}$$

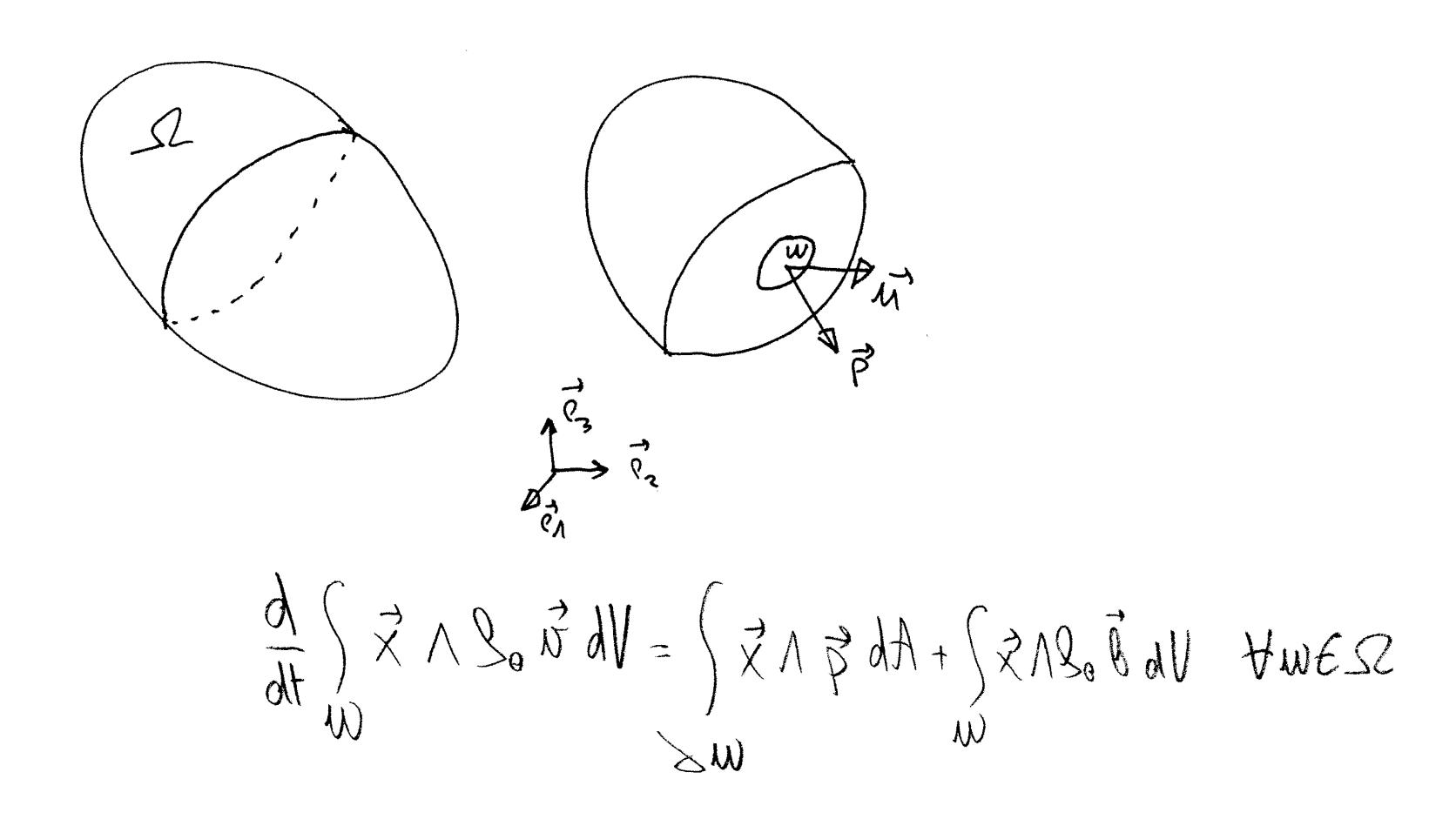
Conservation of the angular momentum: graphical interpretation



The satisfaction of the angular conservation momentum imposes:

$$\sigma = \sigma^{T}$$

Conservation of the angular momentum



$$\frac{d}{dt} \left(\frac{2}{3}, \frac{2}{5}, \frac{2}{5} \right) = \left(\frac{2}{5} \right) \times \frac{1}{3} \times \frac{1}{$$

$$(+3 \wedge 3) = 0$$

$$(+3$$

$$\frac{d}{dt} \left(\frac{1}{2} \cdot \frac{$$

SZ 3WY W JAX, 2/4 th (MT)/
$$\hat{x}$$
 = W \hat{y} \hat{y}

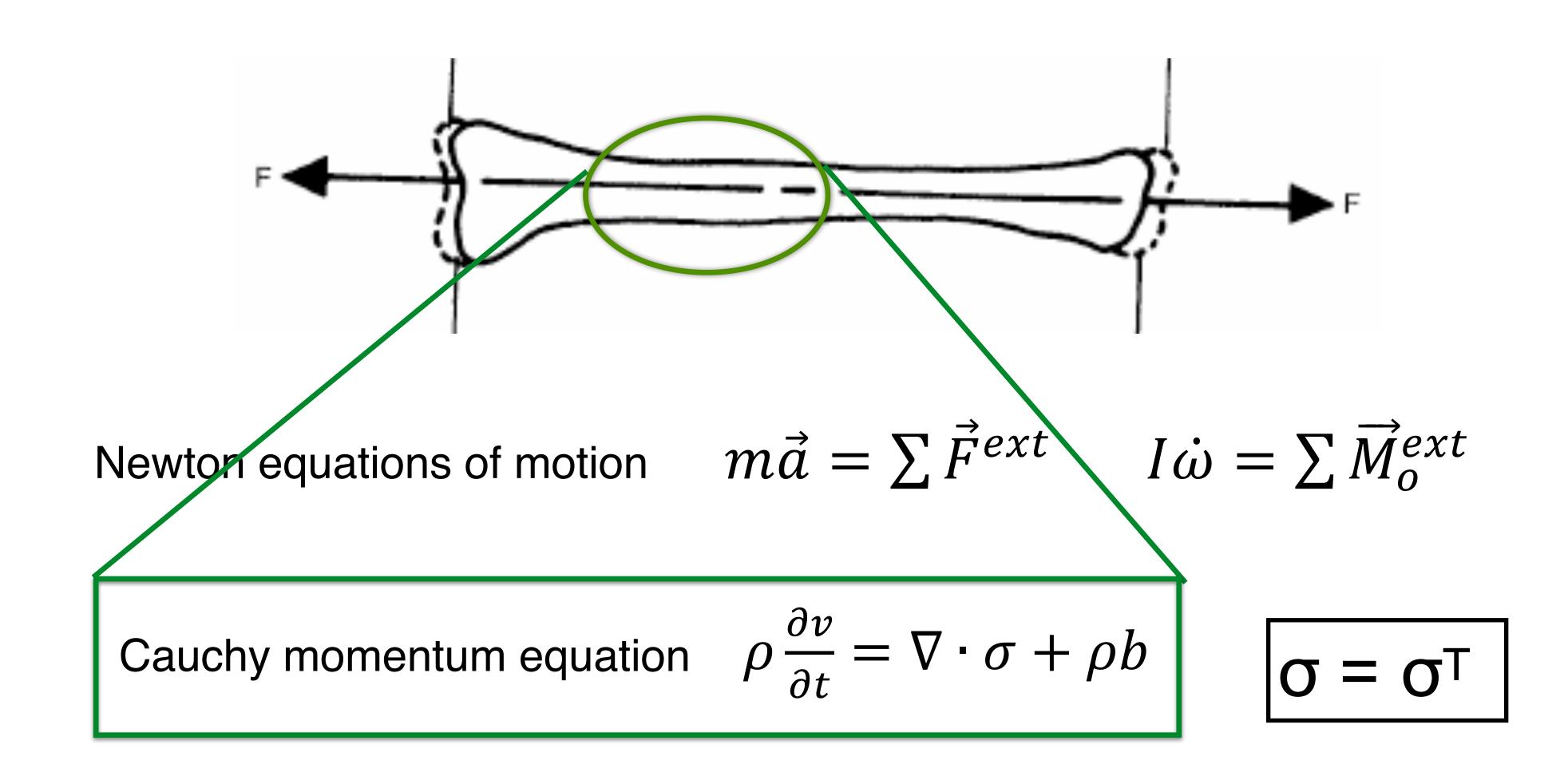
So
$$V_{12} - V_{12} + V_{13} = 0$$

$$= 0 \quad (construction of the linear unconstruction)$$

$$= \frac{E_{12} T_{32} + E_{132} T_{23}}{T_{32} - T_{23}} = 0$$

$$= \frac{1}{123} - \frac{1}{123} = 0$$

Biological tissues are stressed and deformed when a force or moment is applied



One important aspect of biomechanics is then to characterise tissues through constitutive laws

$$\rho \frac{d\mathbf{v}}{dt} = div \, \boldsymbol{\sigma} + \rho \boldsymbol{b}$$

$$\sigma = \sigma(\varepsilon, \dot{\varepsilon}, \varepsilon_p, \dots)$$

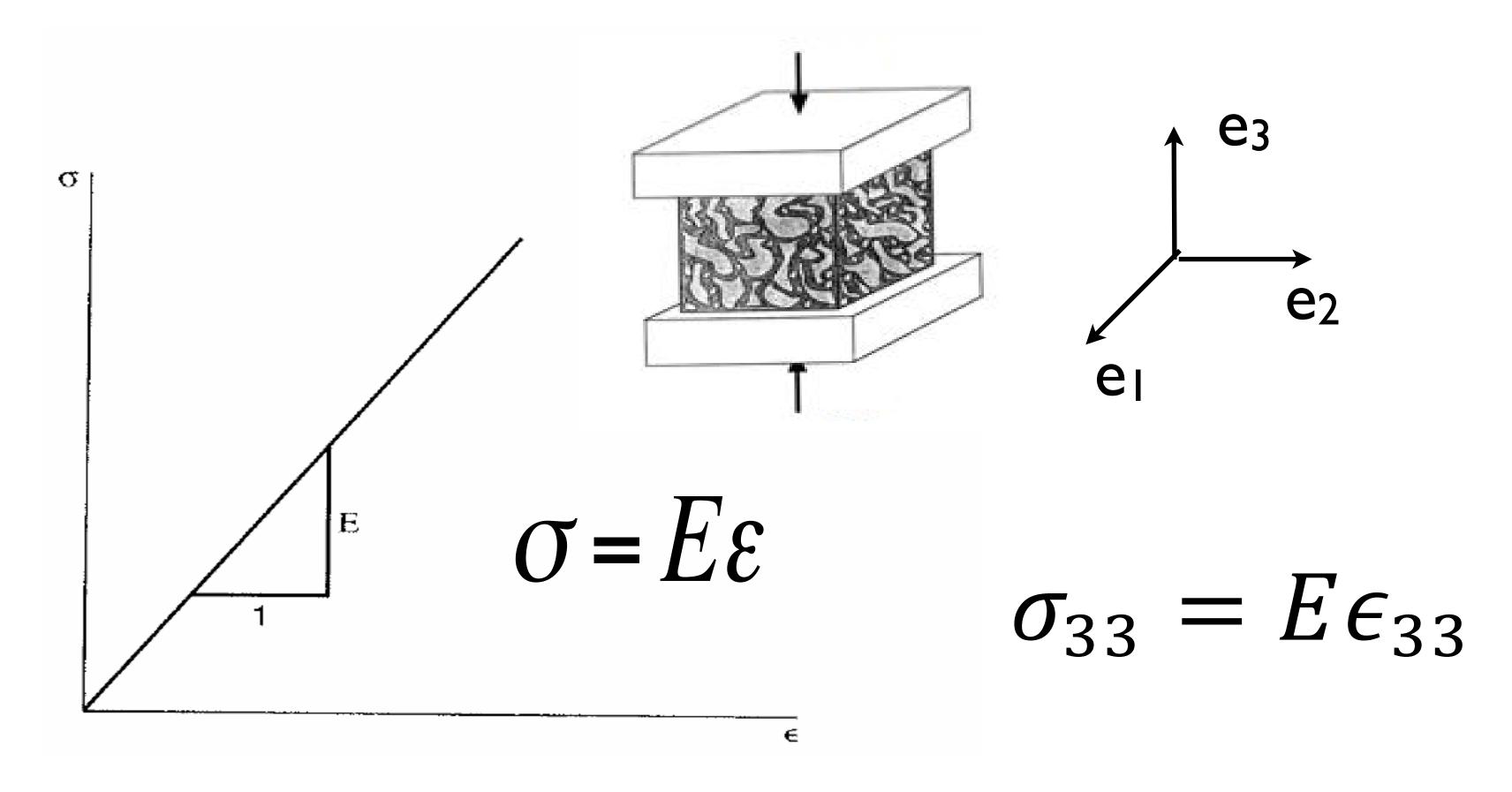
Elasticity ->
$$\sigma = \sigma(\epsilon)$$

Non-linear

Biomechanics at the tissue level

- i) Continuum mechanics (conservation laws)
- ii) Constitutive laws (linear, non-linear)

Hooke's Law in ID



E: Young's modulus

Hooke law in 3D (symmetries of the stiffness tensor C)

General linear relationship between the stress and the strain (81 parameters)

$$\sigma_{ij} = C_{ijkl} \, \epsilon_{kl}$$

Symmetry of the stress and corresponding strain tensors (36 parameters)

$$C_{ijkl} \rightarrow C_{\alpha\beta}$$

Matrix notation of Hooke's law (Voigt notation)

$$[\boldsymbol{\sigma}] = \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} \equiv \begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{bmatrix} ; \quad [\boldsymbol{\epsilon}] = \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2\epsilon_{23} \\ 2\epsilon_{13} \\ 2\epsilon_{12} \end{bmatrix} \equiv \begin{bmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3} \\ \epsilon_{4} \\ \epsilon_{5} \\ \epsilon_{6} \end{bmatrix}$$

$$[\sigma] = [C][\epsilon]$$

$$[\boldsymbol{C}] = \begin{bmatrix} C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1131} & C_{1112} \\ C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2231} & C_{2212} \\ C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3331} & C_{3312} \\ C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2331} & C_{2312} \\ C_{3111} & C_{3122} & C_{3133} & C_{3123} & C_{3131} & C_{3112} \\ C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1231} & C_{1212} \end{bmatrix} := \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{bmatrix}$$

Hooke law in 3D (symmetries of the stiffness tensor C)

Stress derived from a strain energy function *U* (21 parameters)

$$\sigma_{ij} = \frac{\partial U}{\partial \epsilon_{ij}} \Longrightarrow C_{ijkl} = \frac{\partial^2 U}{\partial \epsilon_{ij} \partial \epsilon_{kl}}$$

$$C_{\alpha\beta} -> C_{\beta\alpha}$$

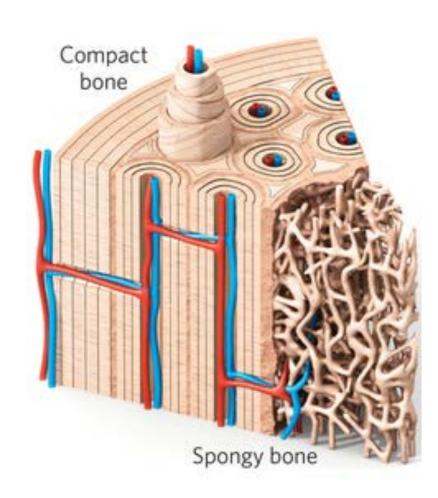
$$[C] = \begin{bmatrix} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} \\ C_{21} C_{22} C_{23} C_{24} C_{25} C_{26} \\ C_{31} C_{32} C_{33} C_{34} C_{35} C_{36} \\ C_{41} C_{42} C_{43} C_{44} C_{45} C_{46} \\ C_{51} C_{52} C_{53} C_{54} C_{55} C_{56} \\ C_{61} C_{62} C_{63} C_{64} C_{65} C_{66} \end{bmatrix}$$

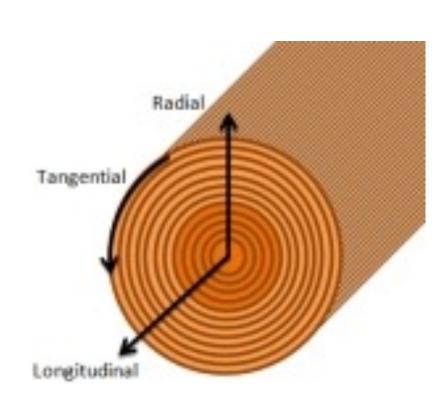
$$\equiv \begin{bmatrix} C_{11} C_{12} C_{13} C_{14} C_{15} C_{16} \\ C_{12} C_{22} C_{23} C_{24} C_{25} C_{26} \\ C_{13} C_{22} C_{23} C_{24} C_{25} C_{26} \\ C_{13} C_{23} C_{33} C_{34} C_{35} C_{36} \\ C_{14} C_{24} C_{34} C_{44} C_{45} C_{46} \\ C_{15} C_{25} C_{35} C_{45} C_{55} C_{56} \\ C_{16} C_{26} C_{36} C_{46} C_{56} C_{66} \end{bmatrix}$$

$$\sigma_i = C_{ij}\epsilon_j$$
.

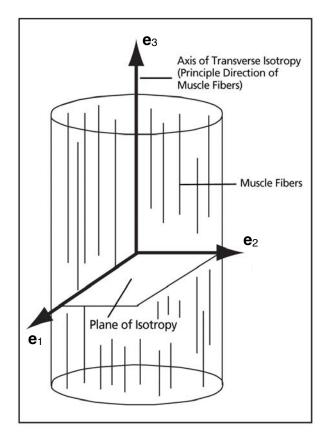
Hooke law in 3D (material symmetry)

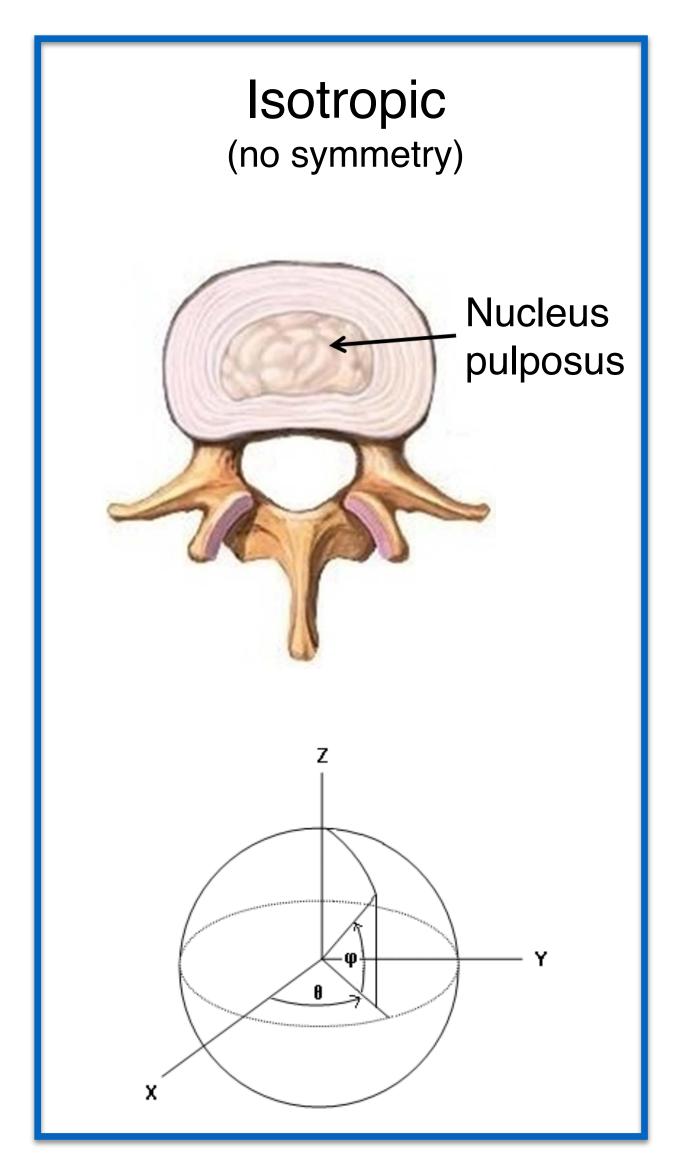
Orthotropic (3 plans)





Transversely isotropic (1 direction perpendicular to a plan)





Hooke law in 3D (material symmetry)

Isotropic material -> isotropic stiffness tensor (2 parameters):

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
 8: Kronecker symbol

λ and μ are 2 scalars called Lamé constants

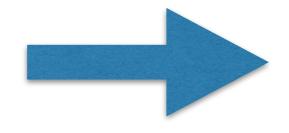
$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ \lambda & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & \mu \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}$$

Tensorial formulation for linear elastic isotropic material

$$\sigma = \lambda(tr\epsilon)I + 2\mu\epsilon$$

tr
$$\varepsilon = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}$$

I: tensor identity



link with "usual" E (Young's modulus)
$$\sigma_{33} = E \varepsilon_{33}$$
?

Hooke law in 3D (material symmetry -> isotropy)

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix} = 1/E \begin{bmatrix} 1 & -v & -v & 0 & 0 & 0 \\ -v & 1 & -v & 0 & 0 & 0 \\ -v & -v & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+v) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+v) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+v) \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix}$$

Tensorial formulation ->
$$\boldsymbol{\varepsilon} = \frac{1}{E} (\boldsymbol{\sigma} - v[tr(\boldsymbol{\sigma})\boldsymbol{I} - \boldsymbol{\sigma}])$$

Voigt notation (3) -> $\varepsilon_3 = \frac{1}{E} [\sigma_3 - v(\sigma_1 + \sigma_2)]$
Index notation (33) -> $\varepsilon_{33} = \frac{1}{E} [\sigma_{33} - v(\sigma_{11} + \sigma_{22})]$

Relation between the different isotropic elastic linear parameters

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\ 0 & \nu & 1-\nu & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \end{bmatrix}$$

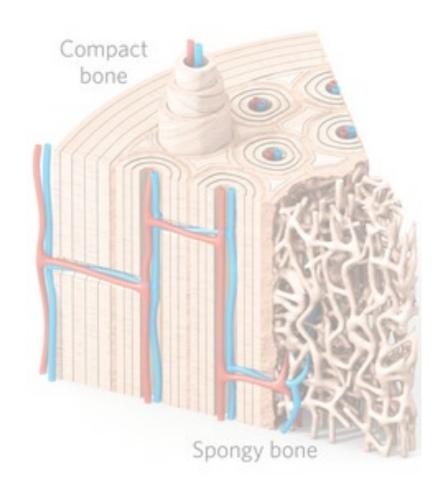
$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$$
 $\mu = \frac{E}{2(1+\nu)}$

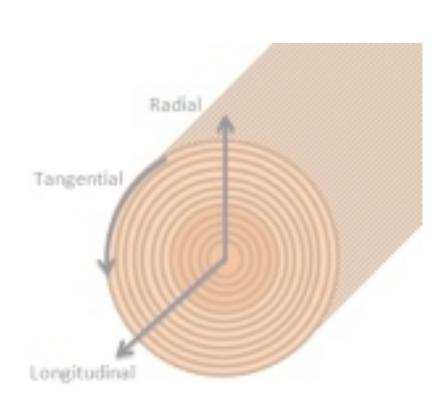
Relation between the different isotropic elastic linear parameters

	λ	μ	E_{\cdot}	ν	k
			$\mu(3\lambda + 2\mu)$	λ	$3\lambda + 2\mu$
λ, μ	±•		$\lambda + \mu$	$2(\lambda + \mu)$	3
	 -	$\lambda(1-2\nu)$	$\lambda(1+\nu)(1-2\nu)$		$\frac{\lambda(1+\nu)}{2}$
λ, ν		2ν	ν		3v
2 1	- 	$3(k-\lambda)$	$9k(k-\lambda)$	λ-	4,
λ, k		2	$3k - \lambda$	$3k - \lambda$	
	$(2\mu - E)\mu$			$(E-2\mu)$	μE
μ , E	$(E-3\mu)$			2μ	$3(3\mu - E)$
	2μν		$2\mu(1+\nu)$		$2\mu(1+\nu)$
μ, ν	$\frac{1-2v}{1-2v}$				3(1-2v)
	$\frac{3k-2\mu}{3}$		$9k\mu$	$3k-2\mu$	
μ, k			$3k + \mu$	$6k + 2\mu$	
	νE	E			E
<i>E</i> , v	(1+v)(1-2v)	$\frac{1}{2(1+\nu)}$		****	3(1-2v)
	3k(3k-E)	3kE		(3k - E)	
E, k	$\frac{3k(3k-L)}{9k-E}$	$\frac{1}{9k-E}$	****	$\frac{-}{6k}$	
	$\frac{3kv}{1+v}$	3k(1-2v)	3k(1-2v)		
v, k		$\frac{1}{2(1+v)}$			_

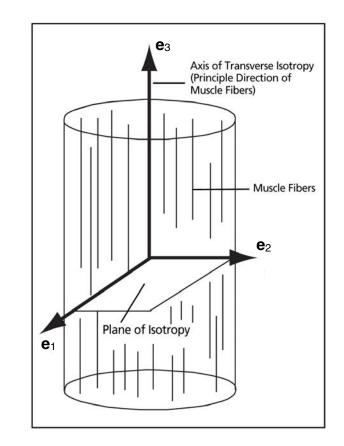
Hooke law in 3D (material symmetry)

Orthotropy (3 plans)

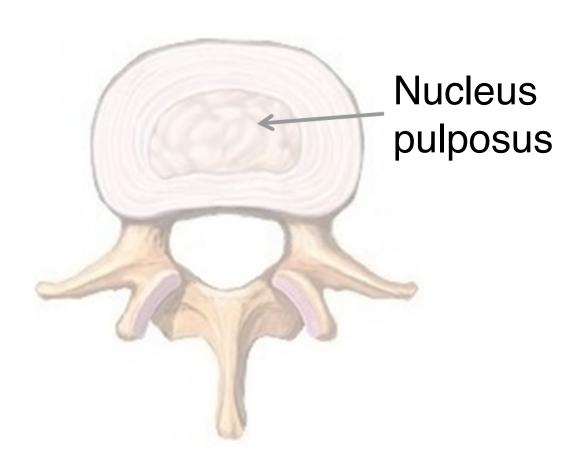


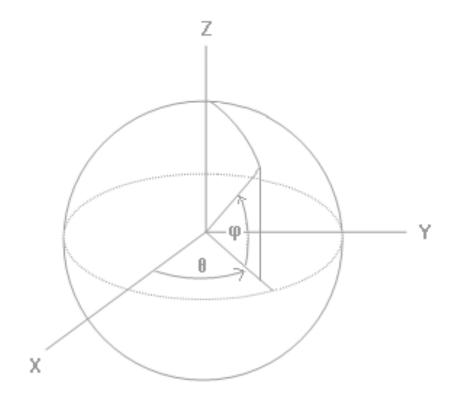


Transverse isotropy
(1 direction perpendicular to a plan)



Isotropy (no symmetry)





Hooke law in 3D (material symmetries -> transversely isotropic)

Material symmetry (anisotropy e.g transverse isotropy -> 5 parameters)

 E_p , v_p : Young modulus and Poisson ratio in the plane of isotropy E_t , v_t : Young modulus and Poisson ratio in the transverse direction (axis of symmetry) G_{tp} : shear modulus in the plane of isotropy

Material symmetries of different tissues

- i) Isotropic -> cartilage ???
- ii) Transverse isotropic -> ligament, tendon, bone?
- iii) Orthotropic -> bone?

Material symmetries of different tissues



femora-patella contact force

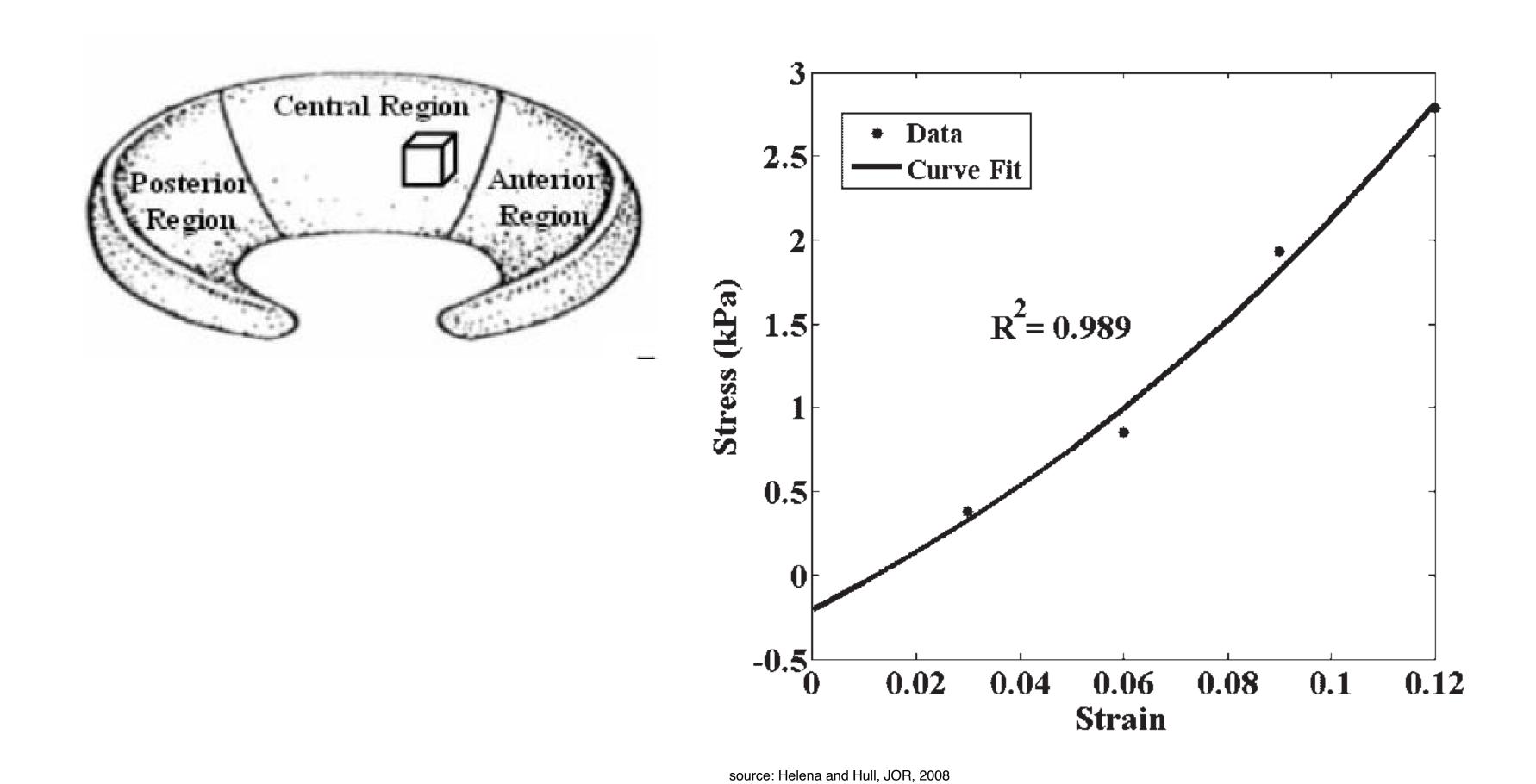
One important aspect of biomechanics is then to characterize tissues through constitutive laws

$$\rho \frac{d\mathbf{v}}{dt} = div \, \boldsymbol{\sigma} + \rho \boldsymbol{b}$$

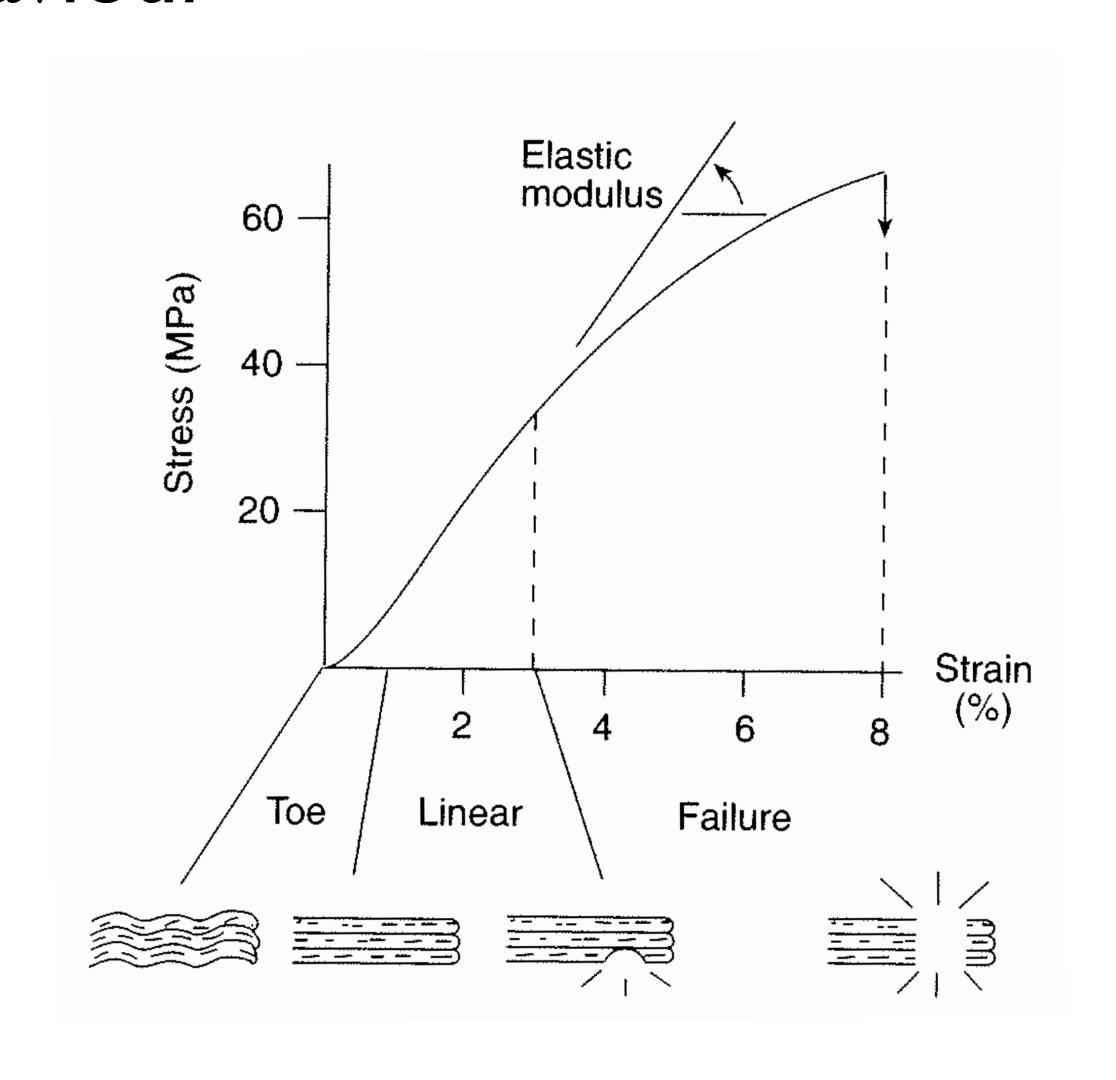
$$\sigma = \sigma(\varepsilon, \dot{\varepsilon}, \varepsilon_p, \dots)$$

Elasticity ->
$$\sigma = \sigma(\epsilon)$$
Non-linear

The compressive behaviour of the meniscus samples depend on their location and deformation



As well, the ligaments which work under traction, show a non-linear tensile behaviour



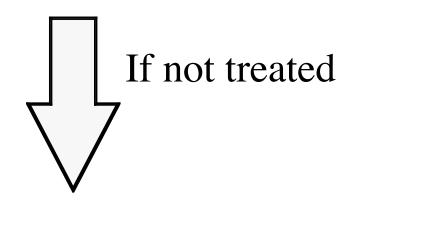
Soft tissues biomechanics represent a challenge as these tissues have usually a non-linear mechanical behaviour

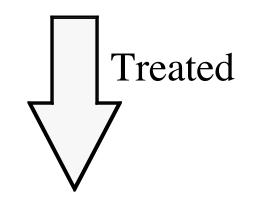
As a background, ACL rupture is frequent in the young and active population

The choice of the treatment is not clearly defined

Rupture of the ACL

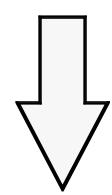
- Knee instability
- Loss of sensorial role



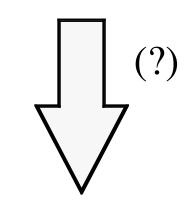


Arthrosis

Stability restored



Inconsistant results

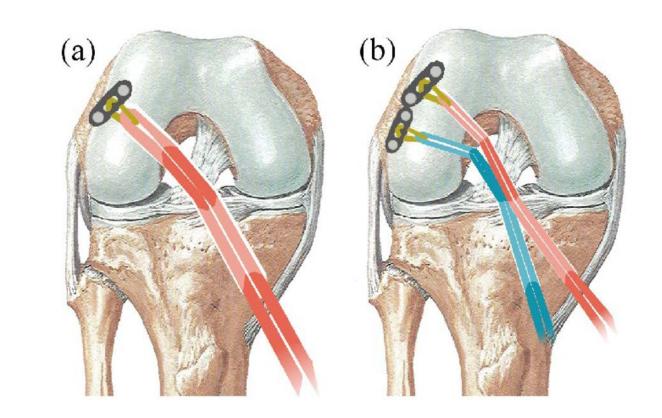


Arthrosis

There are several surgical approaches for the treatment

Techniques

- · Over-the-top, Macintosh
- Simple (a), double (b)
- · Standard, arthroscopy



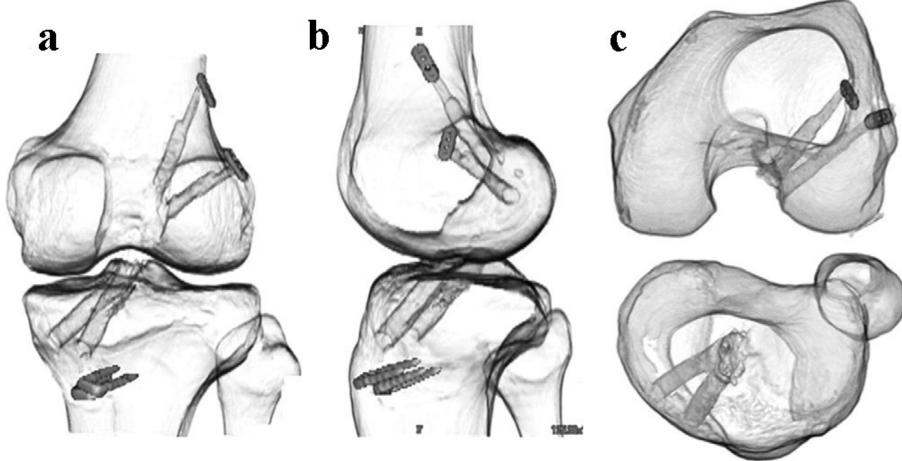
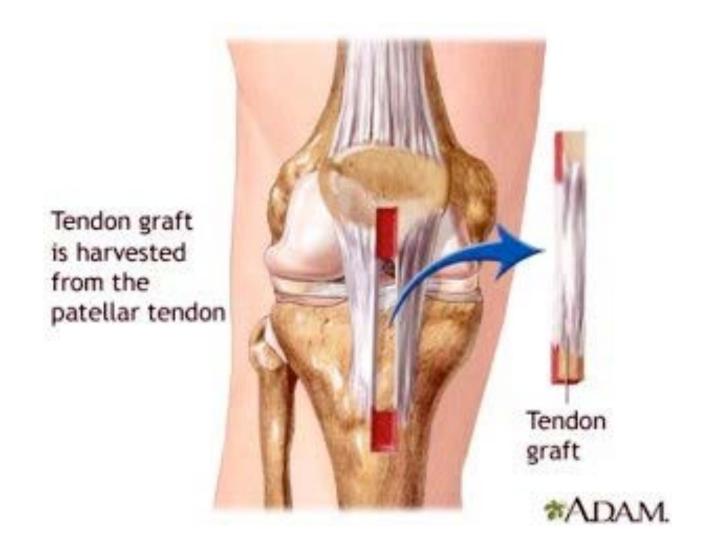


Illustration I 12: Visualisation des tunnels et des fixations d'une reconstruction à double faisceau obtenues à partir de résultats de tomographie 3D. (a) vue postérieure (b) vue sagittale (c) vue dans le plan transversal.

The type of grafts and the rehabilitation programs are also diverse

Type of grafts

- · Auto, allo or artificial grafts
- · Patellar tendon, semí-tendinous



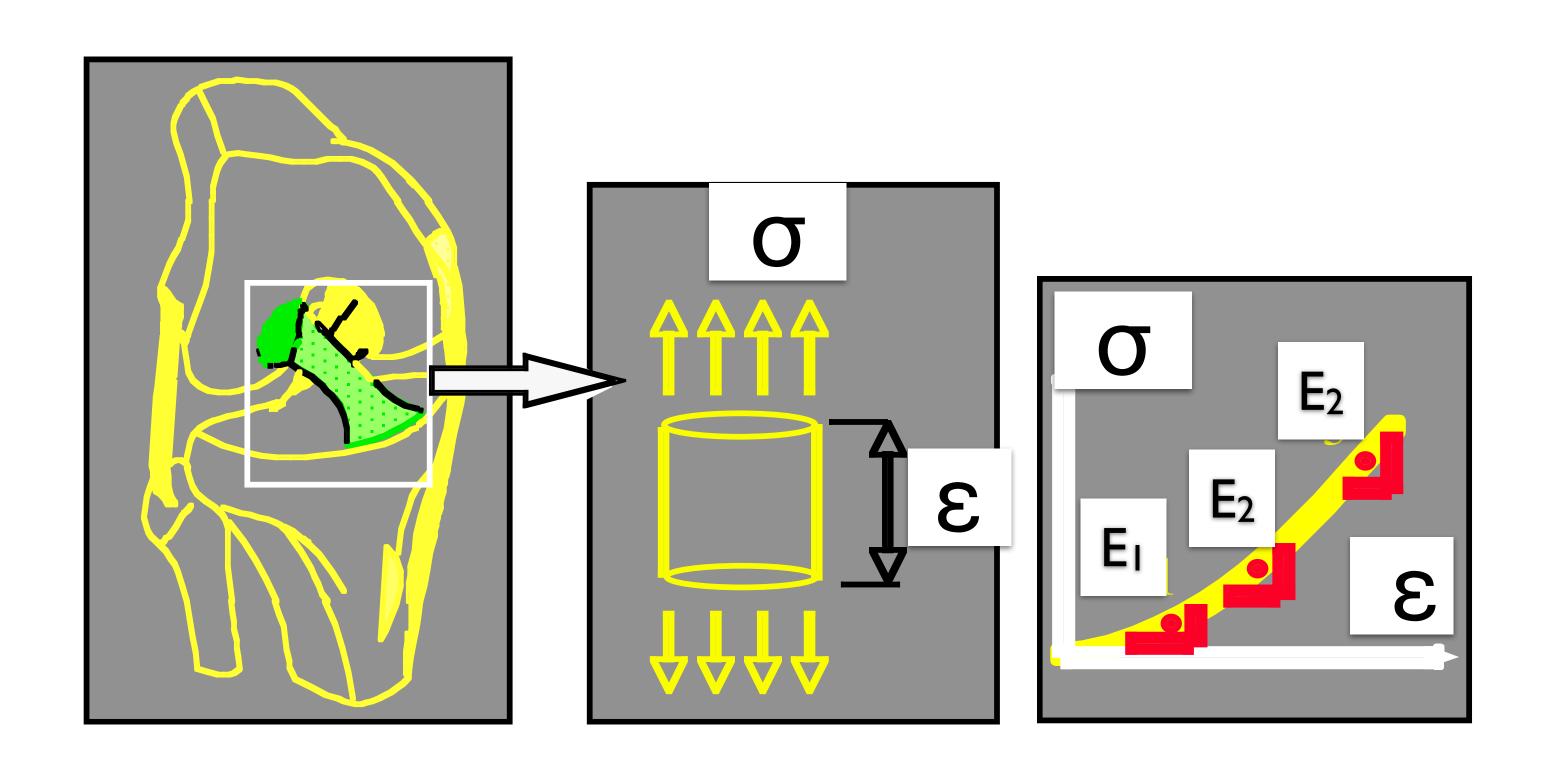
Rehabilitation

- · Rapid mobility, rest
- · Partial, complete mobility
- · use of brace, tape

A biomechanical description of the ligament is then useful for divers reasons

- Mechanical role of the ligament
- Kinematics of the knee
- Global model of the knee
- Improvement of surgical technique
- Input for a biological description

We want to perform mechanical tests on a ligament to obtain a "stress-strain" curve

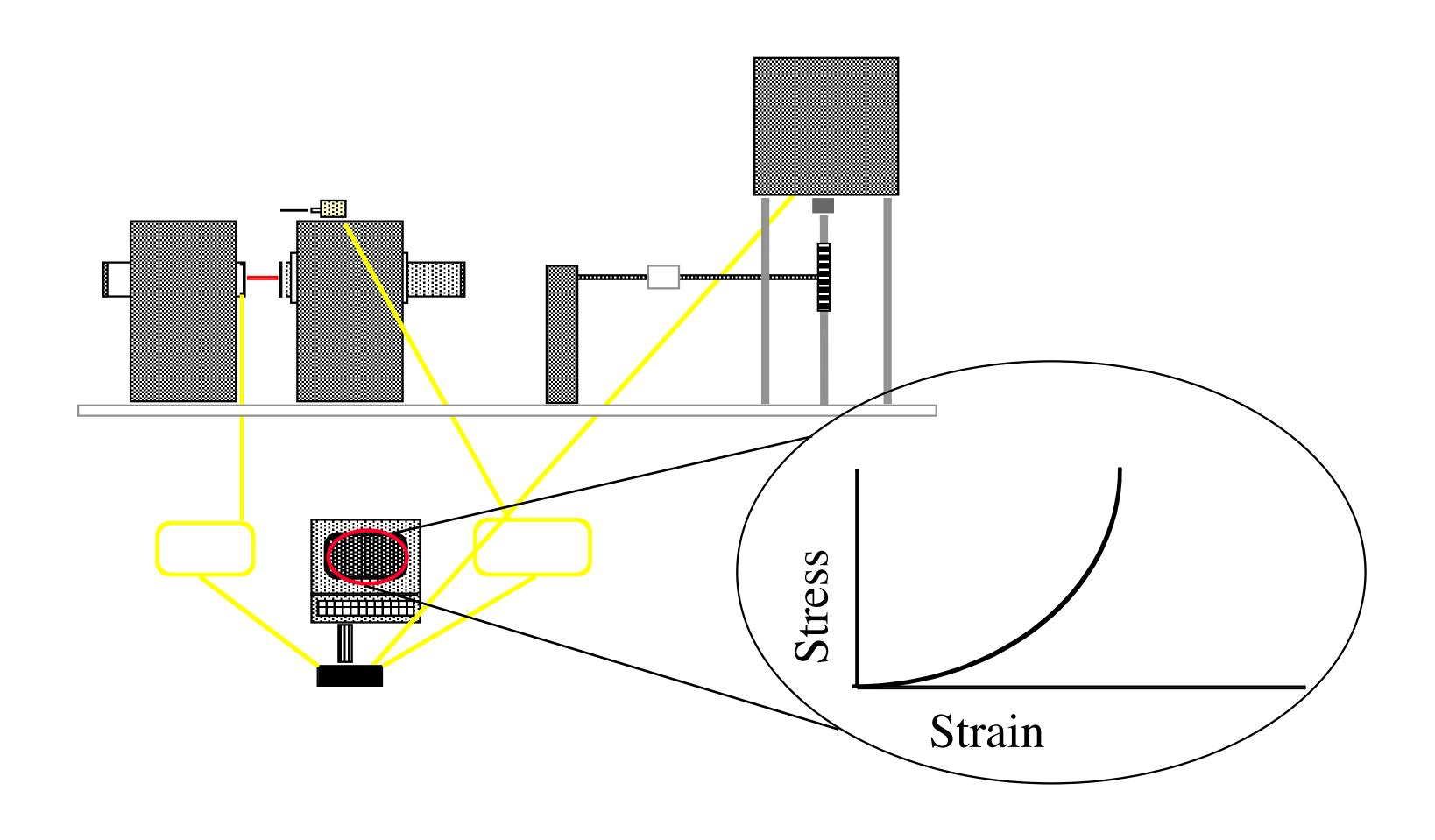


We first have to evaluate the parameters which may influence the stress-strain curves

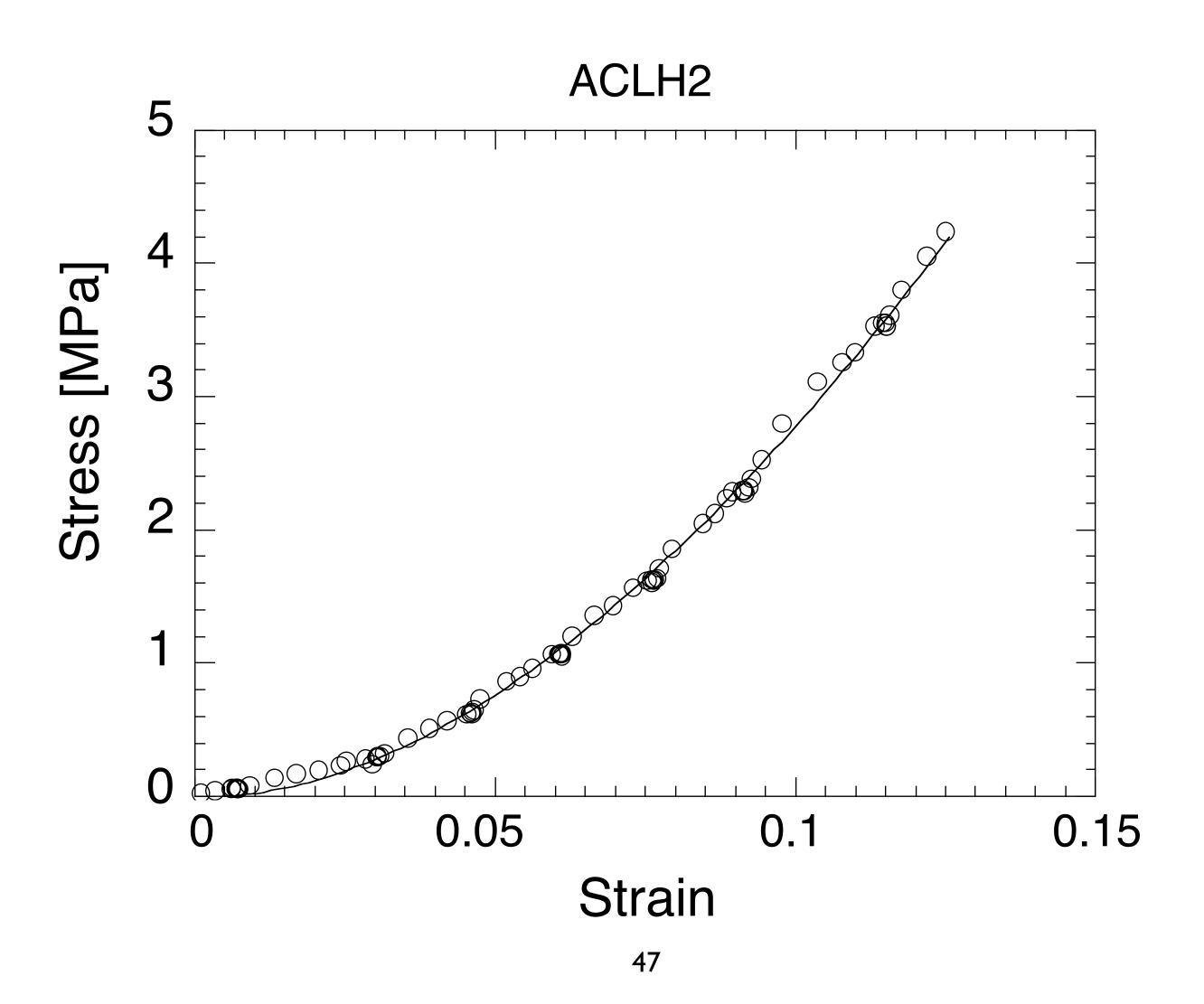
- age
- sex
- temperature
- hydration
- conservation mode
- orientation
- •

EM image highlighting the importance of the specimen orientation before performing a biomechanical test

Stress-strain curves are experimentally obtained



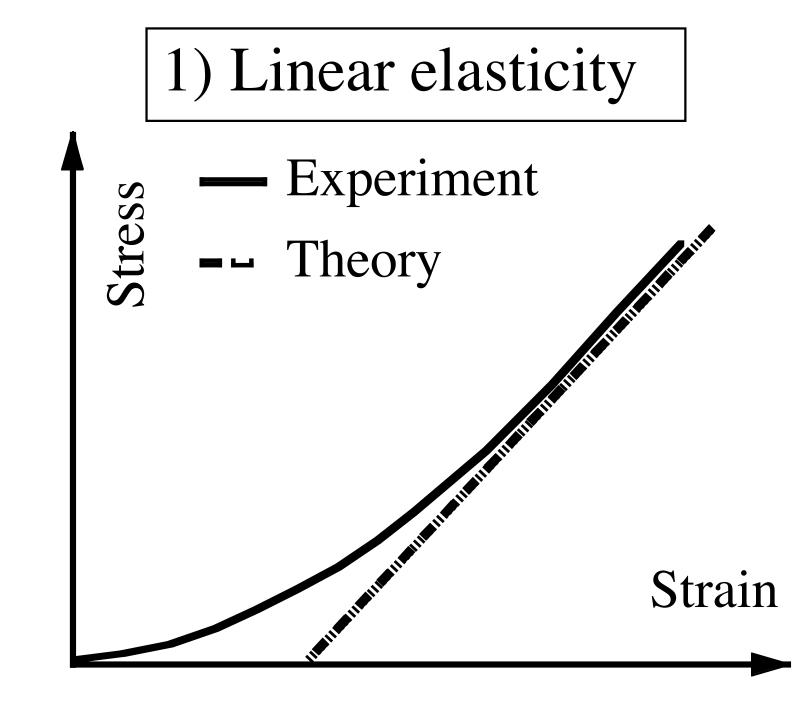
Experimental stress-strain curve of a human ACL specimen



Identification theory-experiment

- 1) Linear elasticity
- 2) Non-linear elasticity

$$\Rightarrow \sigma = \sigma(\varepsilon)$$

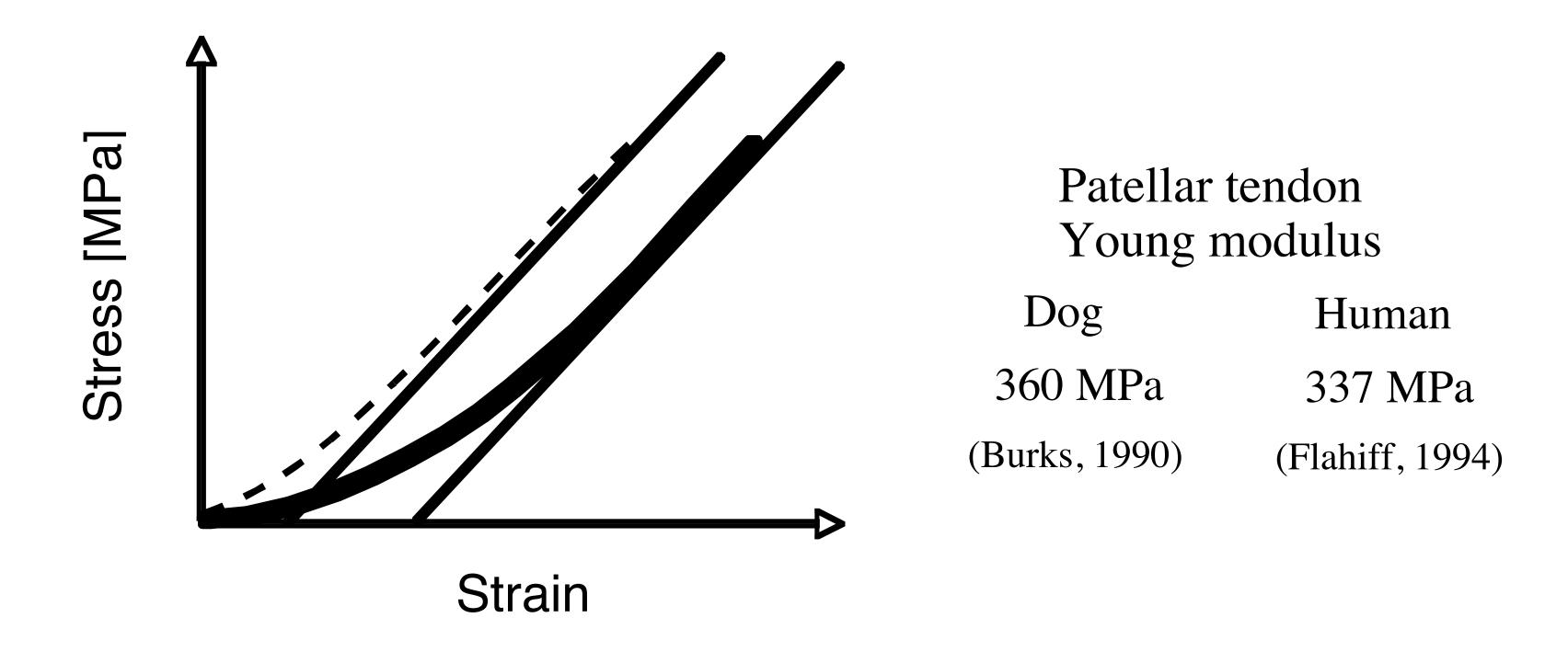


Elastic modulus: one figure (Young modulus)

Human PCL:

- Butler, 1986: 345 ± 107 MPa
- Race, 1994: 248 ± 119 MPa

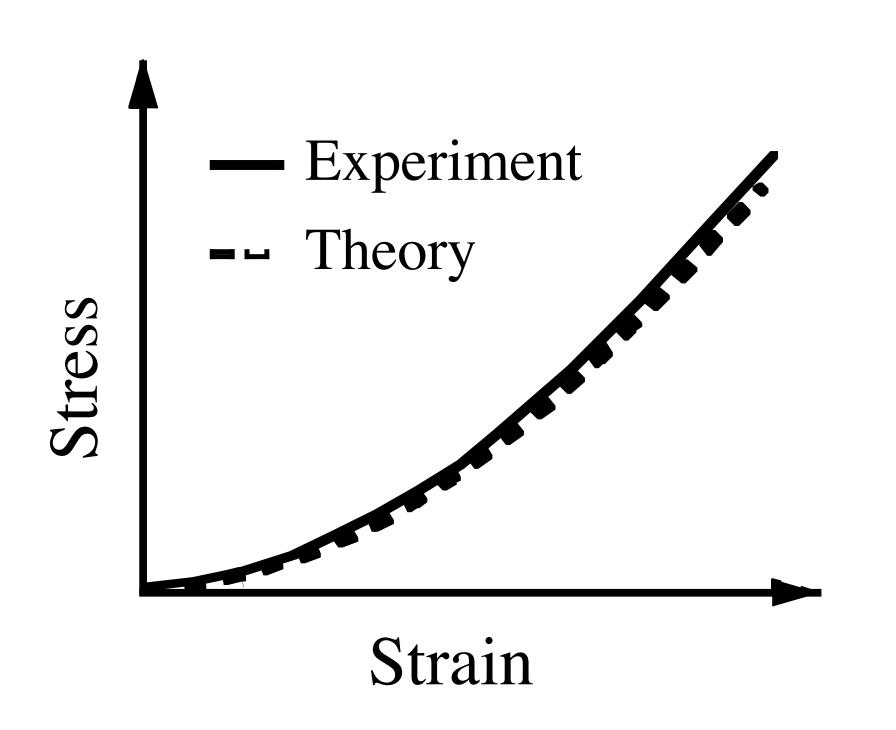
The linear elastic description is restrictive



curve
$$1 \neq \text{curve } 2$$

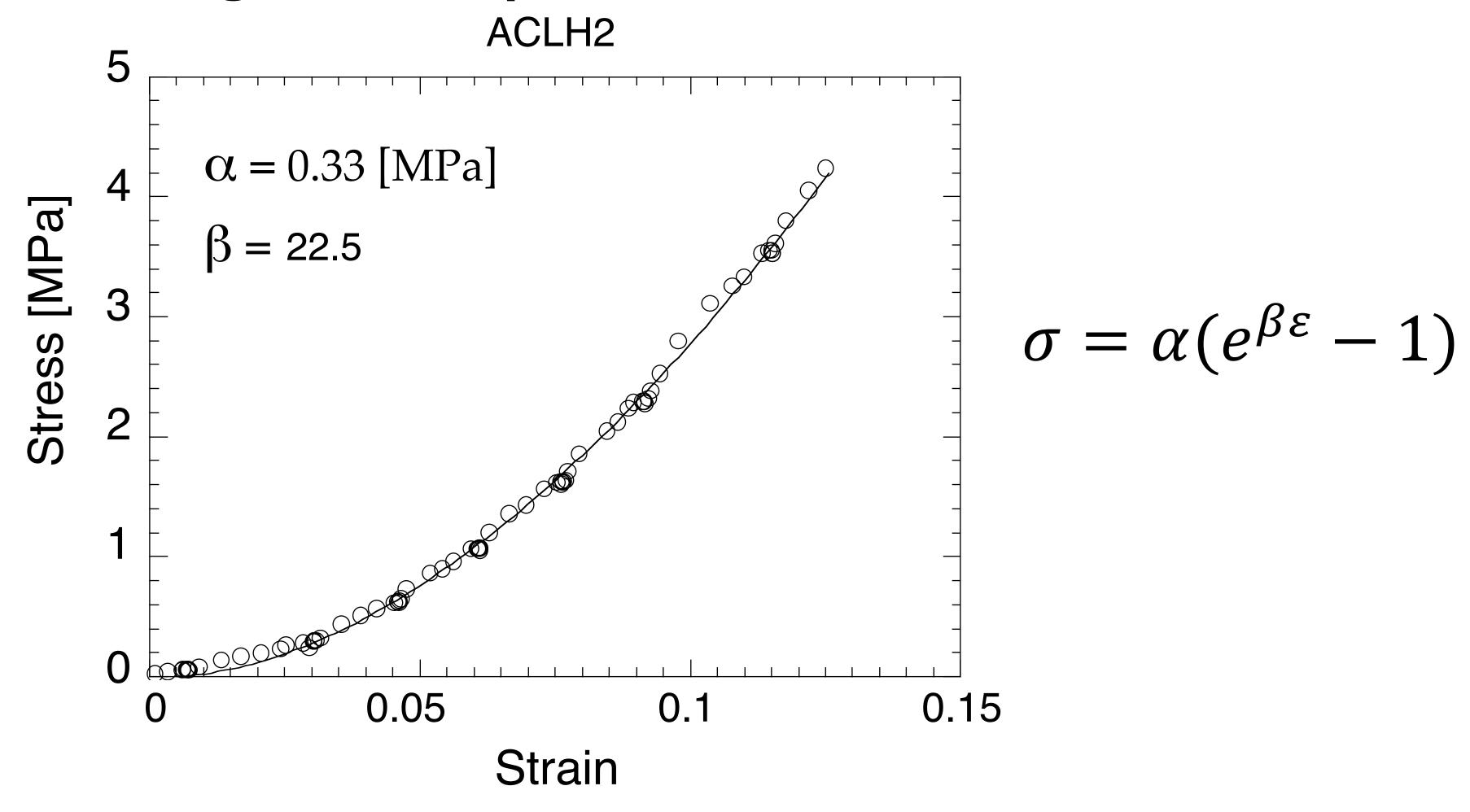
Young modulus $1 = \text{Young modulus } 2$

The non-linear elastic description allows to describe the entire stress-strain curve

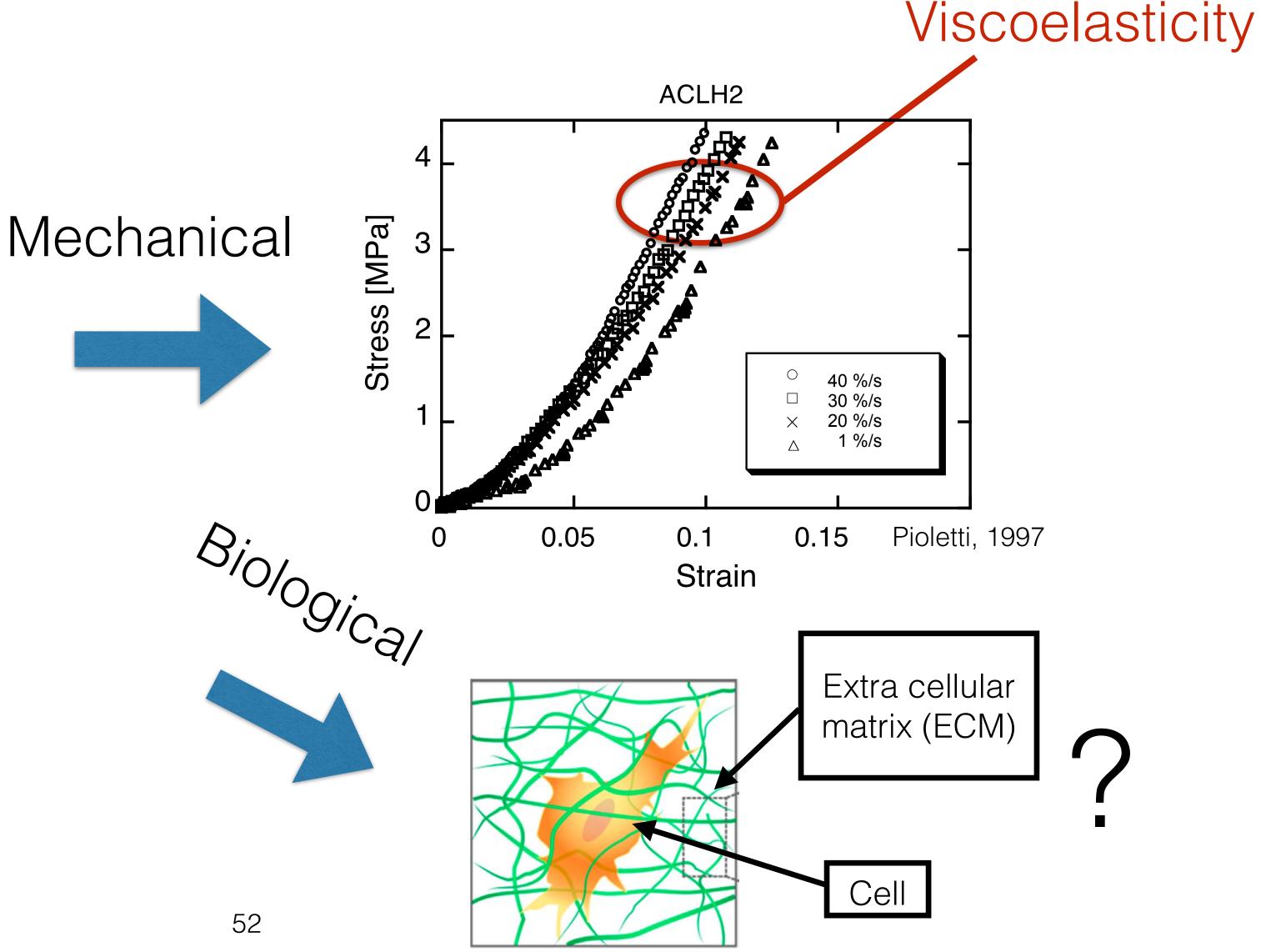


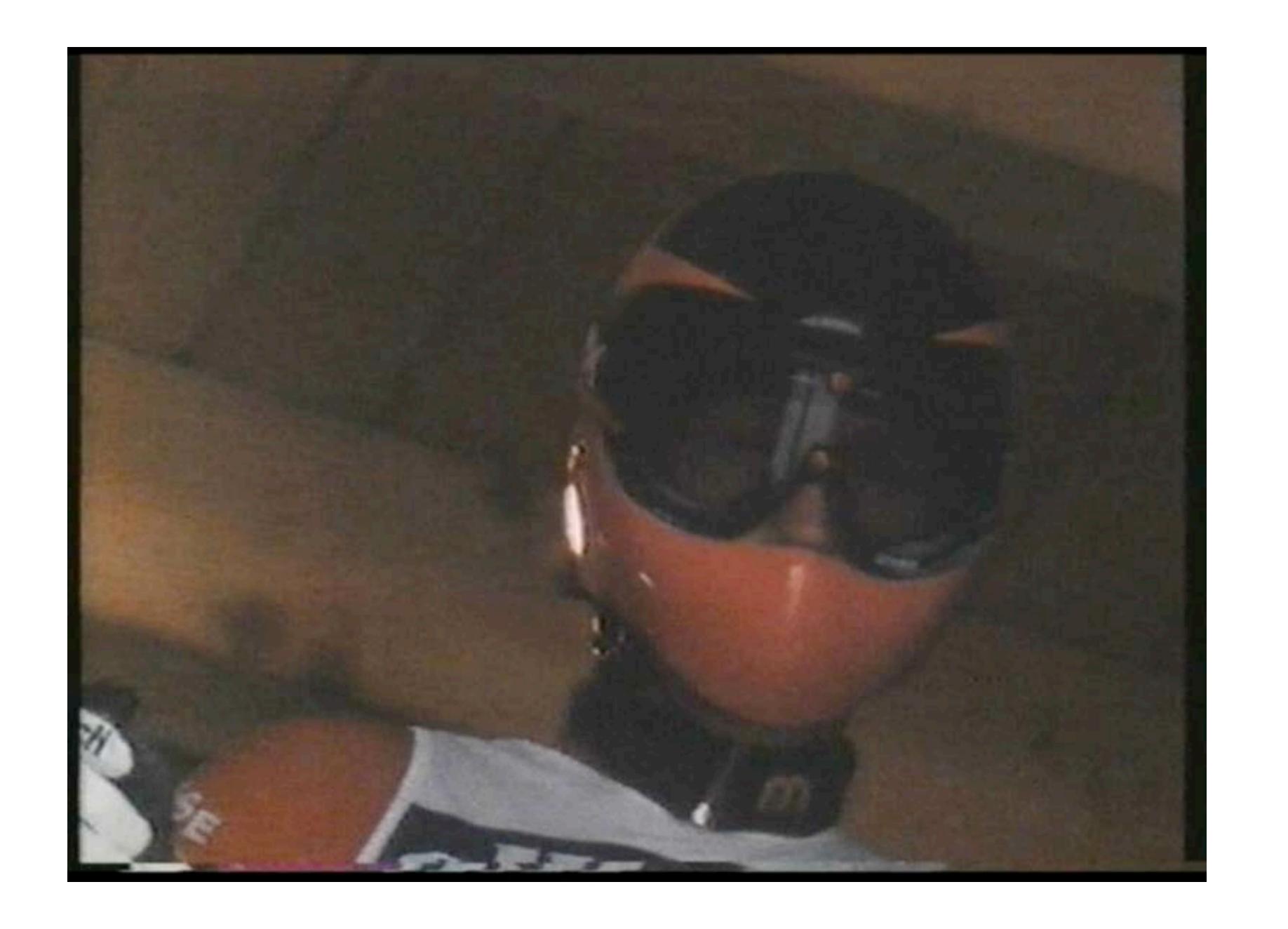
Elastic modulus: mathematical function

The stress-strain curve is described through an exponential function



Biomechanical aspects are involved in most musculoskeletal conditions



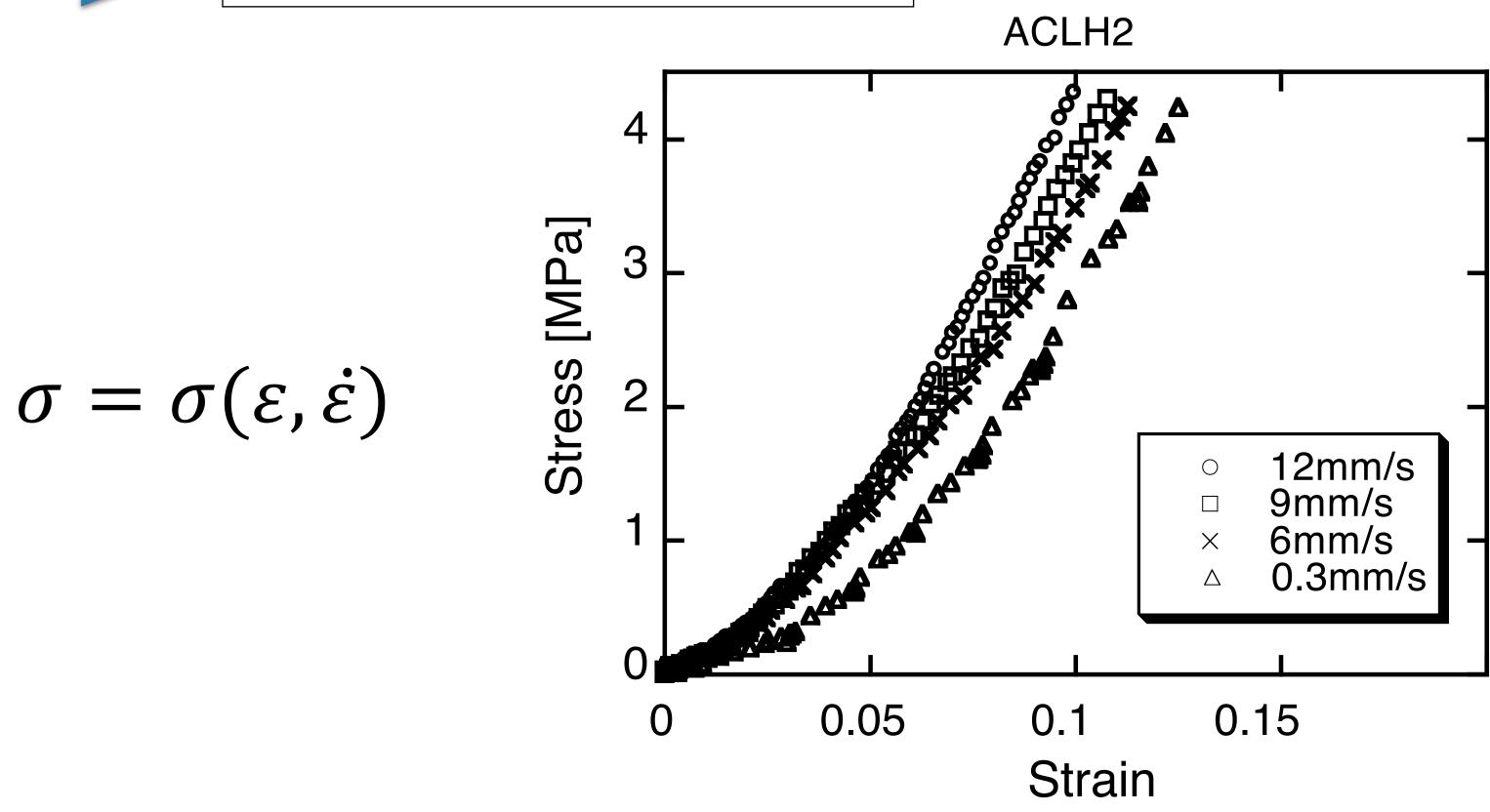


Traction tests performed at different strain rates highlight the viscoelastic behaviour of the ligament

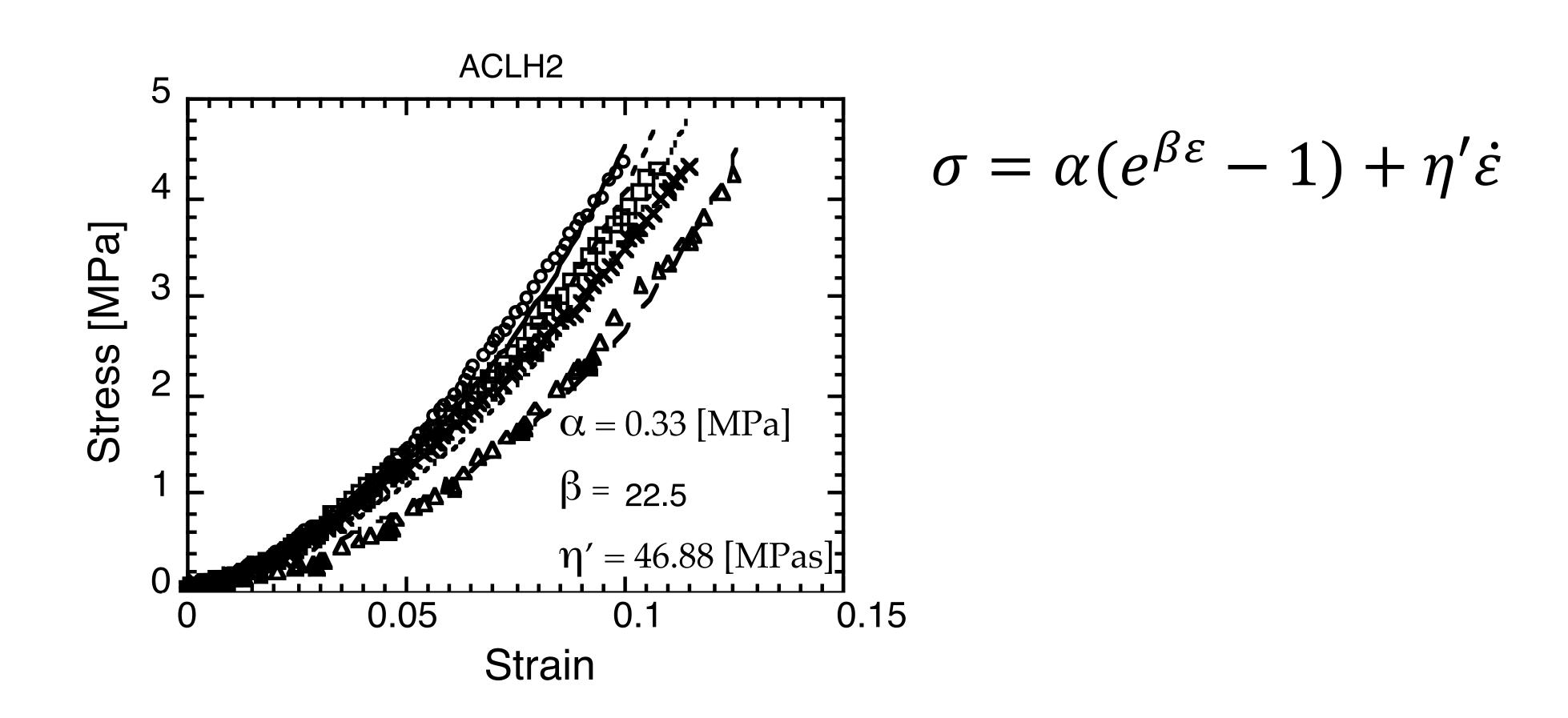
- 1) Linear elasticity
- 2) Non-linear elasticity

Not enough to explain the observed ligament rupture

3) Non-linear Viscoelasticity



The viscous part is determined on the curves obtained at different strain rates



Soft tissues biomechanics represent a challenge as these tissues have usually a non-linear mechanical behaviour

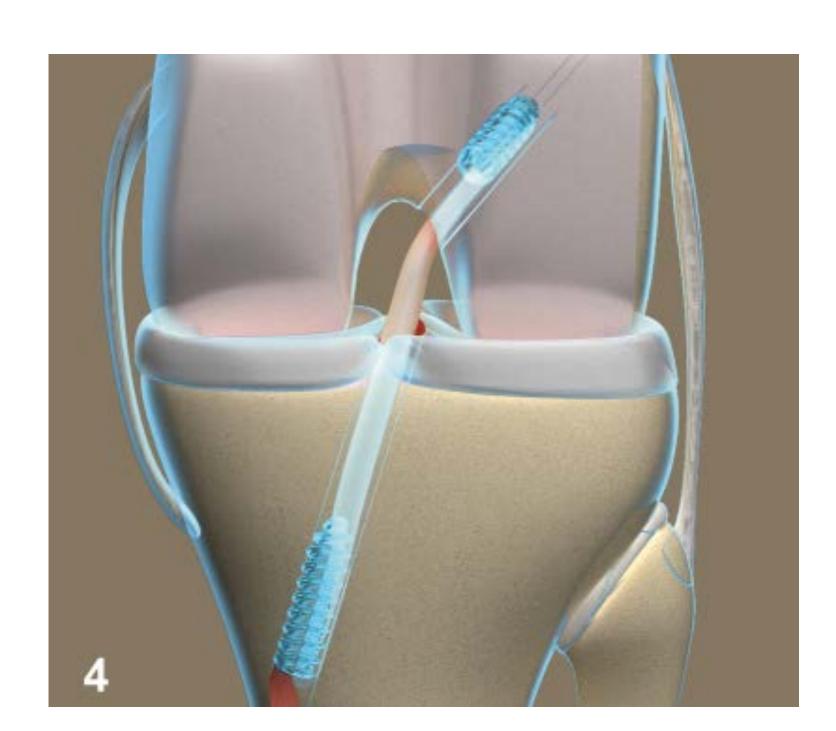
As a background, ACL rupture is frequent in the young and active population

Once the rupture of the ligament is confirmed, it may be necessary to repair it

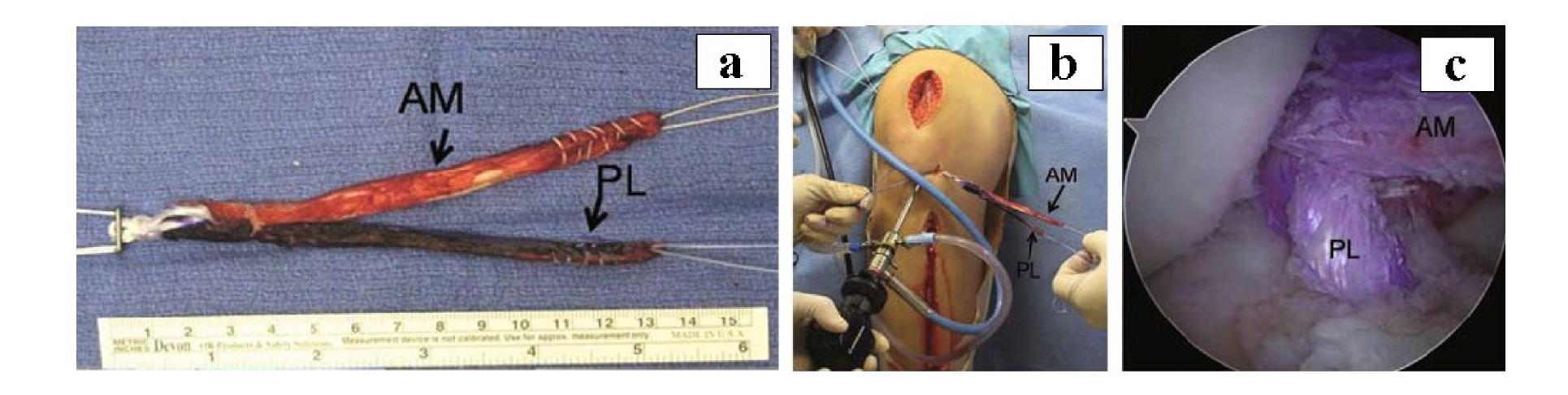
-> ligamentoplasty

One-bundle graft

Double-bundle graft

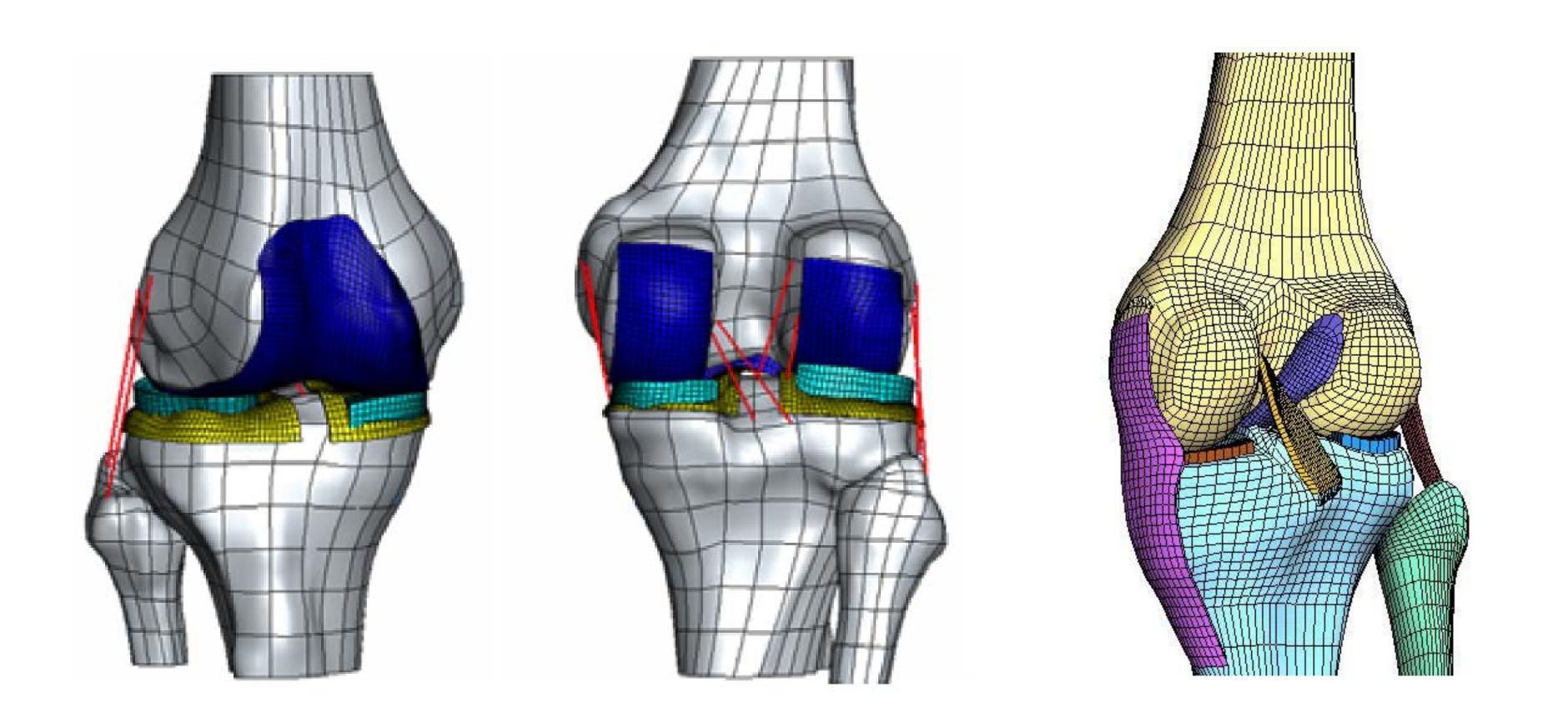


The surgery can be performed in an arthroscopic approach

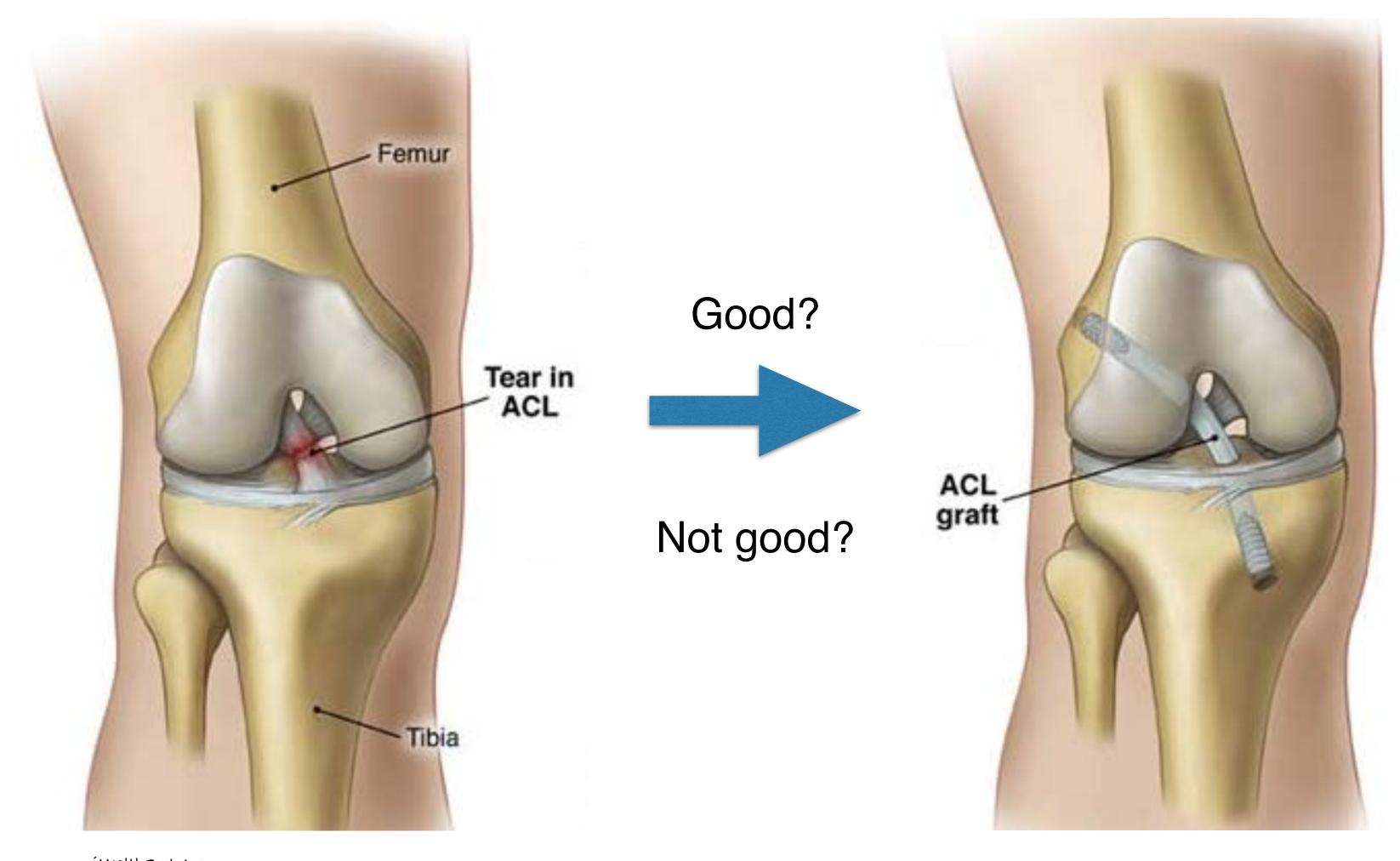


Kato, 2010

To evaluate the outcome of a complicated biomechanical situation, a numerical analysis is often used



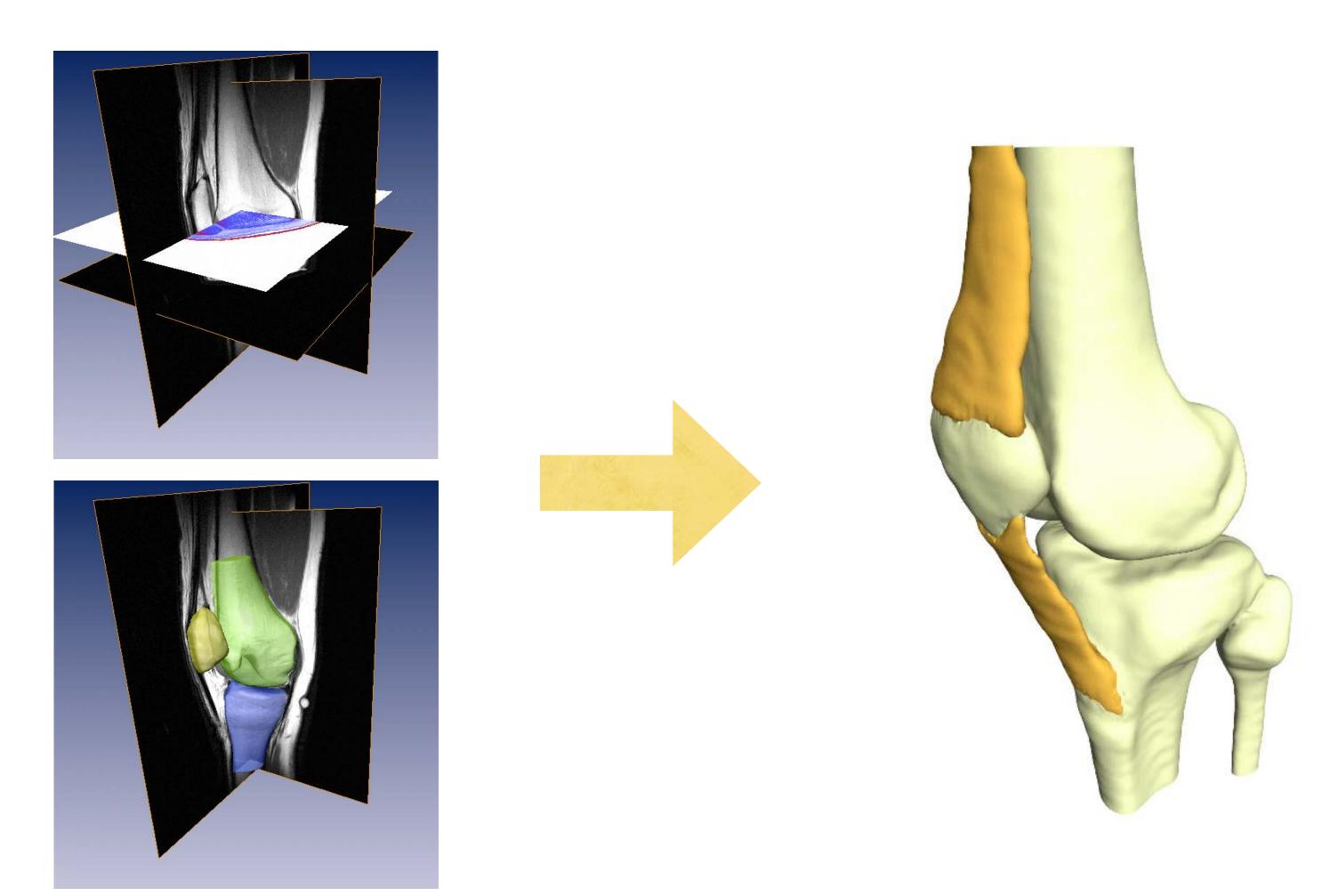
How do we evaluate the success of a ligamentoplasty in general and in particular from a biomechanical point of view?



5 steps are necessary

- I. Geometry (obtained by MRI or CT)
- 2. Constitutive laws (mechanical behaviour)
- 3. Boundary conditions (force or displacement)
- 4. Meshing
- 5. Resolution of conservation laws (numerical solver)
 - -> evaluation of the outcome chosen parameter (in our case, the contact pressure)

I. Geometry (obtained by MRI and/or CT)



2. Constitutive laws (mechanical behavior)

Linear

Bone -> linear elastic isotropic -> $\sigma = \lambda(tr \varepsilon) \mathbb{I} + 2\mu \varepsilon$ -> λ_{bone} , μ_{bone}

Cartilage -> linear elastic isotropic -> σ = $\lambda(tr\epsilon)$ 1+ $2\mu\epsilon$ -> λ_{cart} , μ_{cart}

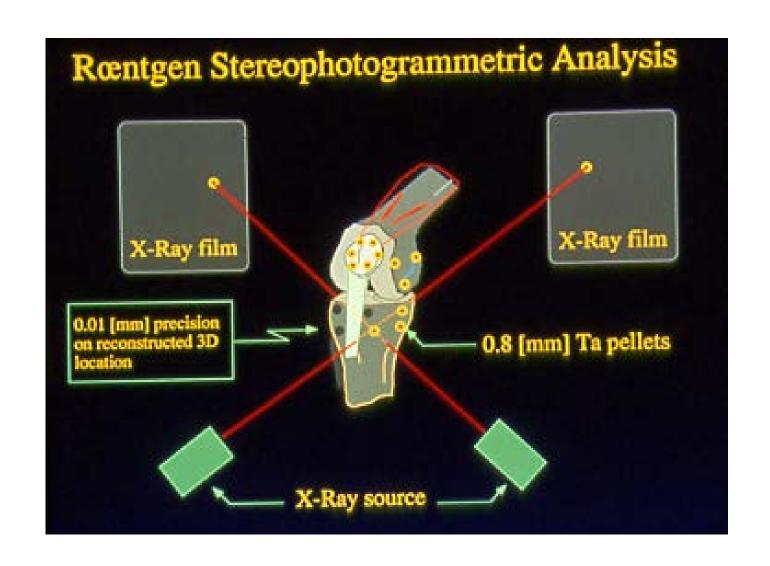
Meniscus -> linear elastic isotropic -> σ = $\lambda(tr\epsilon)$ + 2με -> λ_{menis} , μ_{menis}

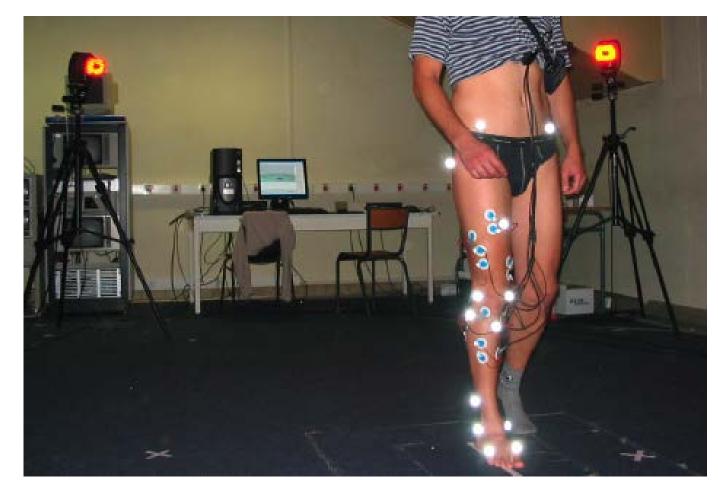
Non-linear

Ligament -> non-linear elastic isotropic -> $\sigma = \alpha(e^{\beta \varepsilon} - 1)$ -> α_{lig} , β_{lig}

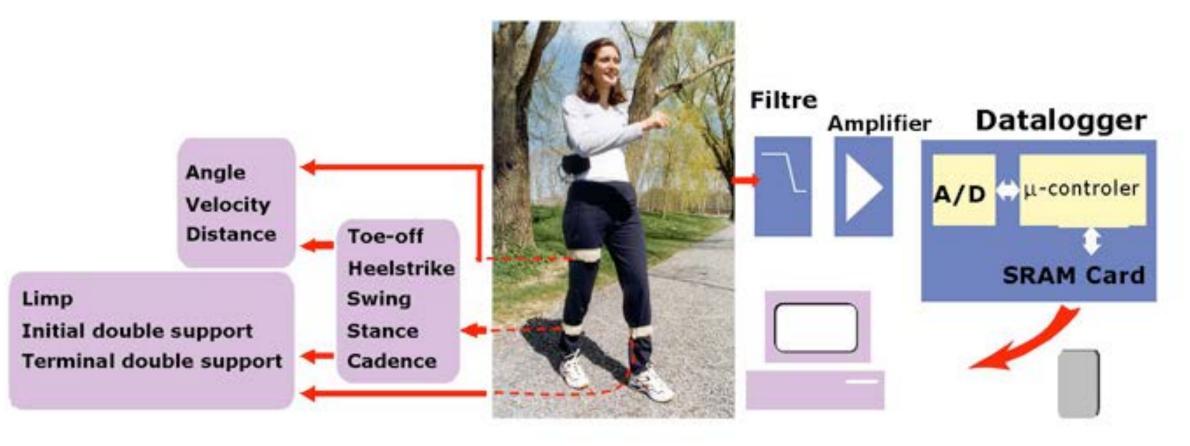
Graft -> non-linear elastic isotropic -> $\sigma = \alpha(e^{\beta \varepsilon} - 1)$ -> α_{graft} , β_{graft}

3. Boundary conditions (force or displacement)



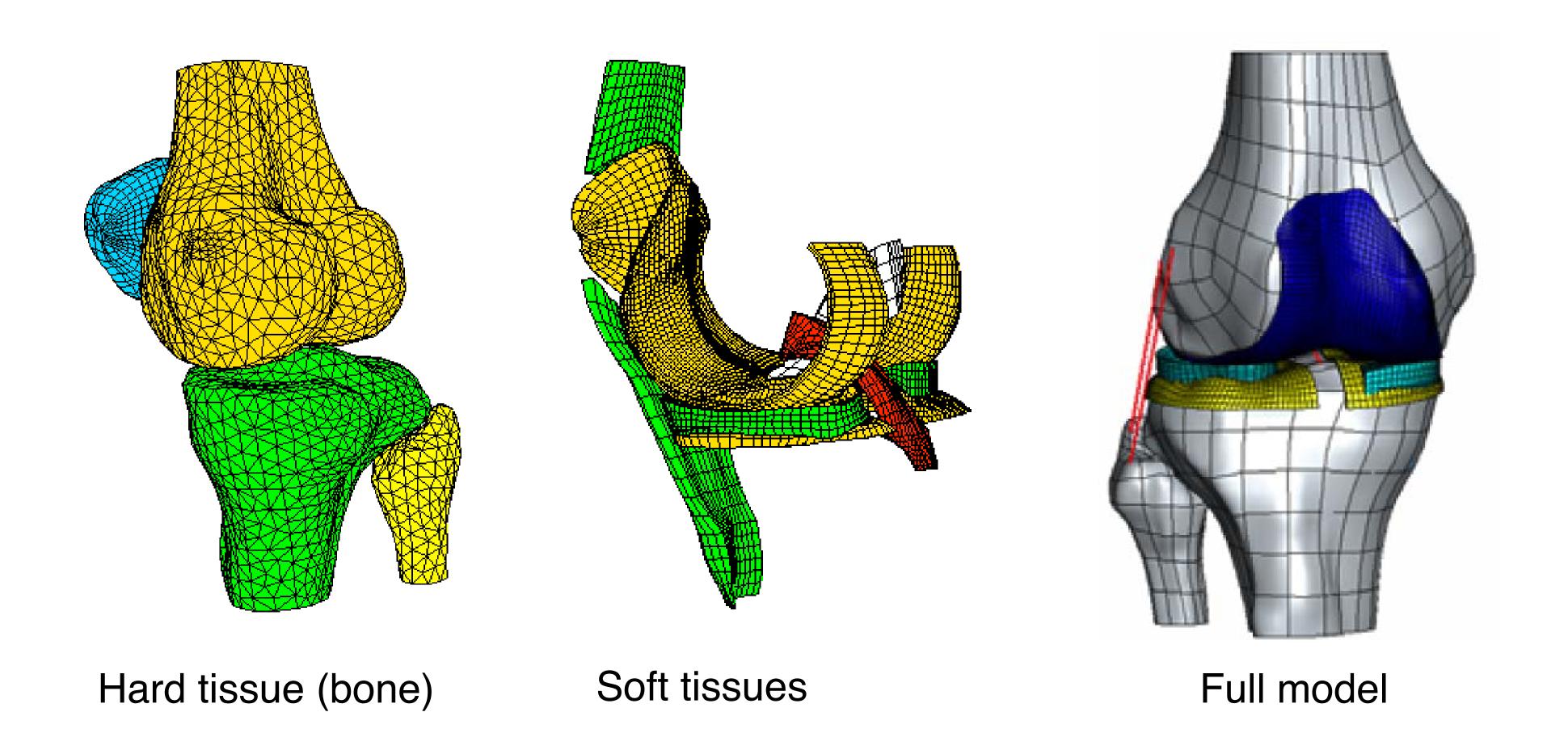


source: Analyse du mouvement, Prof. L. Cheze



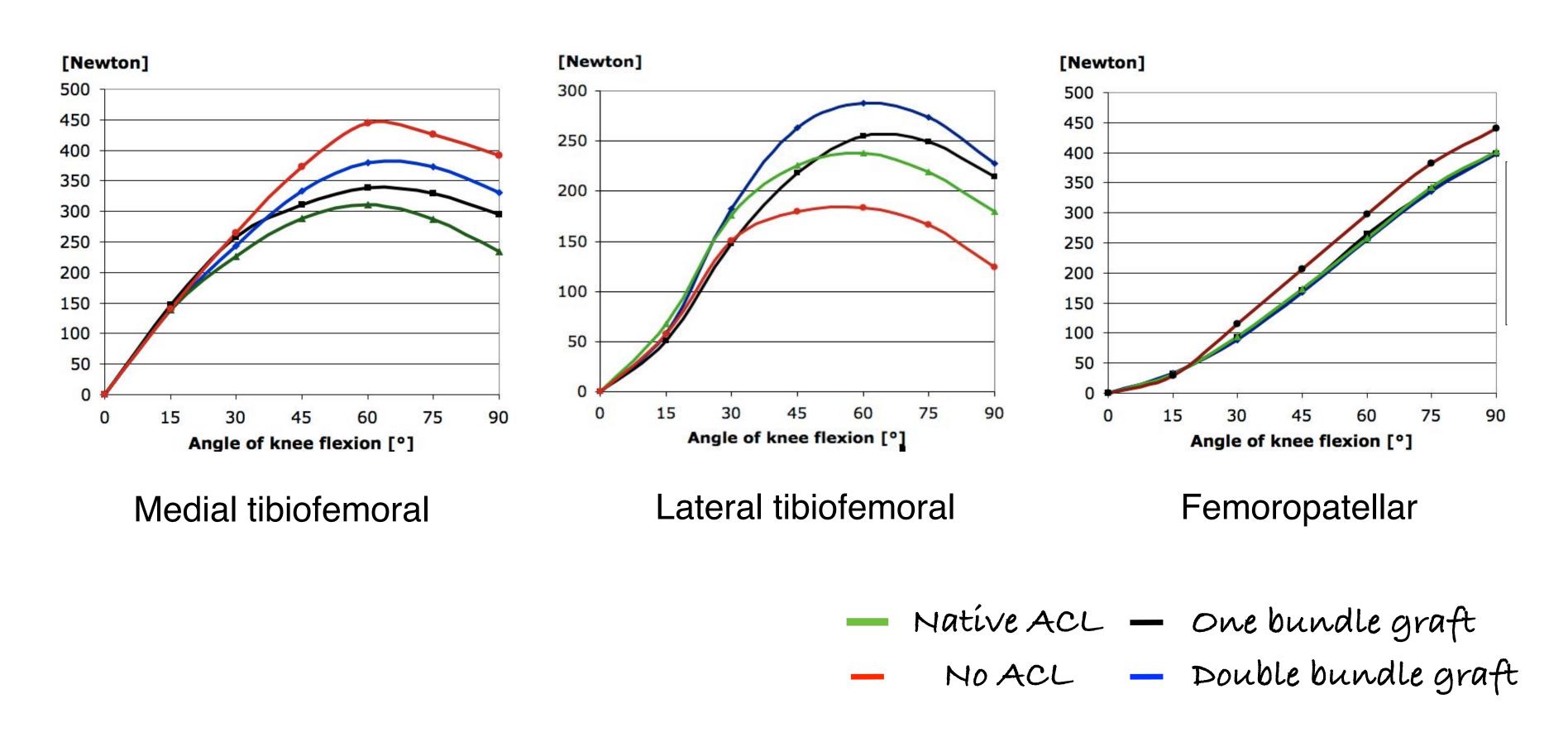
source: Prof. K. Aminian (LMAM/EPFL)

4. Meshing



5. Resolution of conservation laws (numerical solver)

Contact pressure in the different knee compartment



One important aspect of biomechanics is then to characterise tissues through constitutive laws

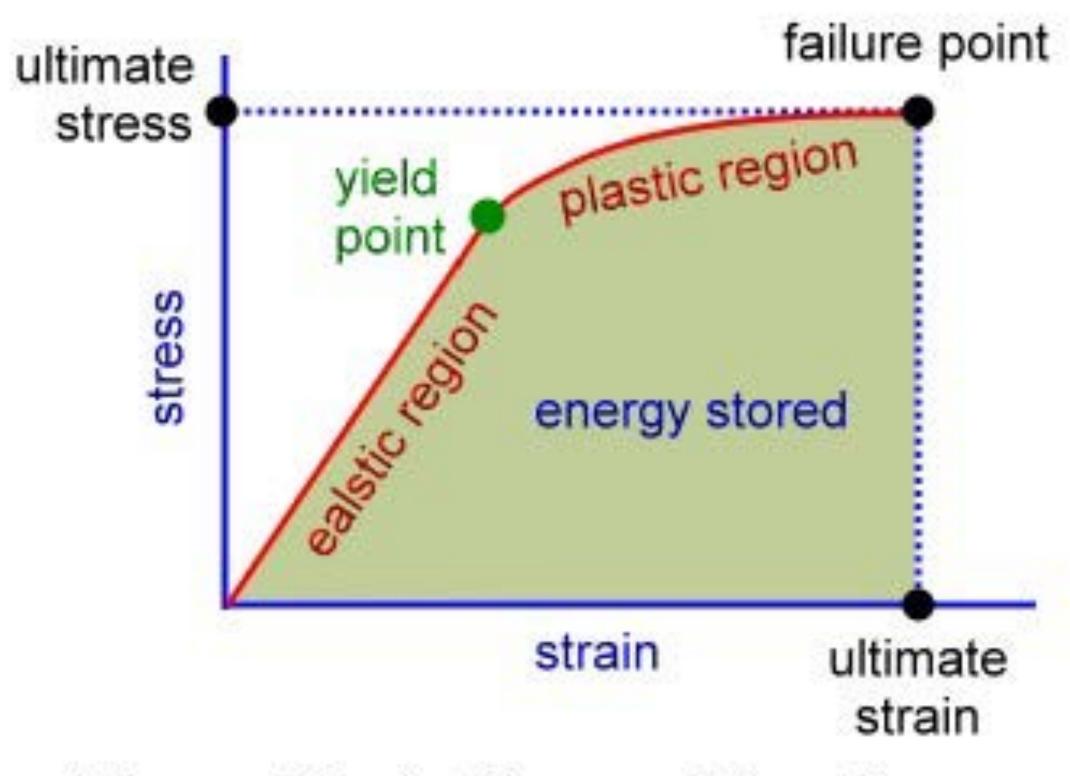
$$\rho \frac{d\mathbf{v}}{dt} = div \, \boldsymbol{\sigma} + \rho \boldsymbol{b}$$

$$\sigma = \sigma(\varepsilon, \dot{\varepsilon}, \varepsilon_p, \dots)$$

Elasticity ->
$$\sigma = \sigma(\epsilon)$$
 Non-linear

Elasticity represents only a limited part of the material behavior

- linear elasticity
- non-linear elasticity
- viscoelasticity
- poroelasticity
- poroviscoelasticity
- plasticity



Stress-Strain Curve of the Bone